Integral necessary condition of optimality of the second order for control problems
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 2, pp. 254-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the optimal control problem that is described by the system of integro-differential equations of the Volterra type with delay and multipoint performance criterion. The first and the second variations of the performance criterion are calculated under the hypothesis that the control domain is open. The necessary condition of the first order optimality in the form analogous to the Euler equations is deduced from the equality of the first variation of performance criterion and zero along the optimal process. Next, the implicit necessary condition of the second order optimality is obtained, which helps to establish rather general but constructively verified necessary condition for the second order optimality. The obtained results are applicable for constructing easy-verifying necessary conditions of optimality for the singular (in the usual sense) controls.
Keywords: integro-differential equation of Volterra type, necessary optimality condition in integral form, classical extreme, necessary second-order optimality condition.
Mots-clés : optimal equation, analog of Euler's equation
@article{VSGTU_2018_22_2_a4,
     author = {M. J. Mardanov and K. B. Mansimov and N. H. Abdullayeva},
     title = {Integral necessary condition of optimality of the second order for control problems},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {254--268},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a4/}
}
TY  - JOUR
AU  - M. J. Mardanov
AU  - K. B. Mansimov
AU  - N. H. Abdullayeva
TI  - Integral necessary condition of optimality of the second order for control problems
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2018
SP  - 254
EP  - 268
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a4/
LA  - ru
ID  - VSGTU_2018_22_2_a4
ER  - 
%0 Journal Article
%A M. J. Mardanov
%A K. B. Mansimov
%A N. H. Abdullayeva
%T Integral necessary condition of optimality of the second order for control problems
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2018
%P 254-268
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a4/
%G ru
%F VSGTU_2018_22_2_a4
M. J. Mardanov; K. B. Mansimov; N. H. Abdullayeva. Integral necessary condition of optimality of the second order for control problems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 2, pp. 254-268. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a4/

[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimal Control, Contemporary Soviet Mathematics, Springer, Boston, 1987, xiii+309 pp. | DOI

[2] Appell J. M., Kalitvin A. S., Zabrejko P. P., Partial integral operators and integro-differential equations, Pure and Applied Mathematics, CRC Press, New York, 2000, x+578 pp. | DOI

[3] Volterra V., Theory of functionals and of integral and integro-differential equations, Blackie Son, London, 1930, xiv+226 pp. | Zbl

[4] Vasil'eva A. B., Tikhonov A. N., Integral'nye uravneniia [Integral Equations], Fizmatlit, Moscow, 2002, 160 pp. (In Russian)

[5] Warga J., Optimal control of differential and functional equations, Academic Press, New York, London, 1972, xiii+531 pp. | DOI | Zbl

[6] Vasil'ev F. P., “Optimality conditions for some classes of systems not solved with respect to the derivative”, Sov. Math., Dokl., 10 (1969), 224–227 | MR | Zbl

[7] Vasil'ev F. P., “Concerning conditions of existence of a saddle point in determinate games for integro-differential systems with a neutral type delay”, Avtomat. i Telemekh., 1972, no. 2, 40–50 (In Russian) | Zbl

[8] Vasil'ev F. P., “Conditions for a saddle-point to exist in determinate integro-differential games involving delay and parameters”, U.S.S.R. Comput. Math. Math. Phys., 10:1 (1970), 17–30 | DOI | MR | Zbl

[9] Ved' Yu. A., Pahyrov Z., “The boundedness and stability of the solutions of integro-differential equations with retarded argument”, Differ. Uravn., 5:11 (1969), 2050–2061 (In Russian) | MR | Zbl

[10] Gabasov R., Kirillova F. M., Printsip maksimuma v teorii optimal'nogo upravleniia [Maximum Principle in Optimal Control Theory], Nauka i tekhnika, Minsk, 1974, 272 pp. (In Russian) | Zbl

[11] Gabasov R., Kirillova F., The Qualitative Theory of Optimal Processes, Control and Systems Theory, 3, Marcel Dekker, New York, Basel, 1976, xlvi+640 pp. | Zbl | Zbl

[12] Mardanov M. J., Gasanov K. K., “Optimality conditions for systems of delay integro-differential equations”, Izv. Akad. Nauk Az. SSR, Ser. Fiz.-Tekh. Mat. Nauk, 1972, no. 3, 114–119 (In Russian) | Zbl

[13] Mardanov M. J., Mansimov K. B., “Necessary optimality conditions of quasi-singular controls in optimal control”, Proc. Inst. Math. Mech. of Azerbaijan. Ser. Phys.-Tech. Math. Sci., 41:1 (2015), 113–122 Retrieved from (December 27, 2017) http://proc.imm.az/volumes/41-1/41-01-12.pdf | Zbl

[14] Melikov T. K., Investigation of special processes of some optimal systems, Thesis of Dissertation (Cand. Phys. Math. Sci.), Inst. Math. Mech., Baku, 1976, 17 pp. (In Russian)

[15] Mardanov M. J., Some issues of theory of optimal controls in the systems of integro-differential equations, Thesis of Dissertation (Cand. Phys. Math. Sci.), Inst. Math. Mech., Baku, 1976, 21 pp. (In Russian)

[16] Melikov T. K., Abbasova S. S., An analogue of the Legendre-Clebsch condition in optimal systems of integro-differential equations of neutral type, Preprint, Azerbaijan Research Institute of Scientific and Technical Information, no. 2222-Az 94, 1994 (In Russian)

[17] Gabasov R., Kirillova F. M., Osobye optimal'nye upravleniia [Singular Optimal Controls], Nauka, Moscow, 1973, 256 pp. (In Russian) | MR

[18] Dem'ianov V. F., Usloviia ekstremuma i variatsionnoe ischislenie [Extremum Conditions and Calculus of Variations], Vyssh. shk., Moscow, 2005, 335 pp. (In Russian)

[19] Mansimov K. B., Osobye upravleniya v sistemakh s zapazdyvaniem, Elm, Baku, 1999, 174 pp.

[20] Mansimov K. B., Osobye upravleniia v sistemakh s zapazdyvaniem [Singular Controls in Delay Systems], Elm, Baku, 1999, 174 pp. (In Russian)

[21] Mansimov K. B., “Multipoint necessary conditions for optimality of controls that are singular in the classical sense in systems with delay”, Differ. Uravn., 21:3 (1985), 527–530 (In Russian) | MR | Zbl