Nonlinear dynamics of open quantum systems
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 2, pp. 214-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

The evolution of a composite closed system using the integral wave equation with the kernel in the form of path integral is considered. It is supposed that a quantum particle is a subsystem of this system. The evolution of the reduced density matrix of the subsystem is described on the basis of the integral wave equation for a composite closed system. The equation for the density matrix for such a system is derived. This equation is nonlinear and depends on the history of the processes in the closed system. It is shown that, in general, the reduced density matrix trace does not conserve in the evolution processes progressing in open systems and the procedure of the trace normalization is necessary as the mathematical image of a real nonlocal physical process. The wave function collapse and EPR correlation are described using this approach.
Keywords: nonlinear evolution, EPR correlation, open quantum systems
Mots-clés : nonlocal interaction, non-markovian process.
@article{VSGTU_2018_22_2_a1,
     author = {A. Yu. Samarin},
     title = {Nonlinear dynamics of open quantum systems},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {214--224},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a1/}
}
TY  - JOUR
AU  - A. Yu. Samarin
TI  - Nonlinear dynamics of open quantum systems
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2018
SP  - 214
EP  - 224
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a1/
LA  - en
ID  - VSGTU_2018_22_2_a1
ER  - 
%0 Journal Article
%A A. Yu. Samarin
%T Nonlinear dynamics of open quantum systems
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2018
%P 214-224
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a1/
%G en
%F VSGTU_2018_22_2_a1
A. Yu. Samarin. Nonlinear dynamics of open quantum systems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 2, pp. 214-224. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_2_a1/

[1] von Neumann J., Mathematische Grundlagen der Quantenmechanik, Springer, Berlin, Heidelberg, 1932, ix+262 pp. | DOI | MR | Zbl

[2] Dirac P. A. M., The Principles of Quantum Mechanics, The International Series of Monographs on Physics, Clarendon Press, London, 1958, xii+312 pp. | MR | Zbl

[3] Bell J. S., “Against ‘measurement’”, Speakable and unspeakable in quantum mechanics. Collected Papers on Quantum Philosophy, Cambridge Univ. Press, Cambridge, 2004, 213–231 | DOI | MR

[4] Einstein A., Podolsky B., Rosen N., “Can quantum-mechanics description of physical reality be considered complete?”, Physical Review, 47 (1935), 777–780 | DOI | Zbl

[5] Bassi A., Ghirardi G. C., “Dynamical reduction models”, Phys. Rept., 379:5–6 (2003), 257–426, arXiv: [quant-ph] quant-ph/0302164 | DOI | Zbl

[6] Feynman R. P., “Space-Time Approach to Non-Relativistic Quantum Mechanics”, Rev. of Mod. Phys., 20:2 (1948), 367–387 | DOI | MR | Zbl

[7] Feynman R. P., Hibbs A. R., Quantum Mechanics and Path Integrals, International Earth Planetary Sciences, McGraw-Hill Co., New York, 1965 | MR | Zbl

[8] Samarin A. Yu., “Nonlocal transformation of the internal quantum particle structure”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016), 423–456 (In Russian) | DOI | Zbl

[9] Samarin A. Yu., Non-mechanical nature of the wave function collapse, 2015, arXiv: [quant-ph] 1507.07202

[10] Lindblad G., “On the generators of quantum dynamical semigroups”, Comm. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl

[11] Carmichael H., An Open Systems Approach to Quantum Optics, Lecture Notes in Physics Monographs, 18, Springer-Verlag, Berlin, Heidelberg, 1991, x+182 pp. | DOI | MR

[12] Zinn-Justin J., Path Integrals in Quantum Mechanics, Oxford Press, Oxford, 2004 | DOI | MR

[13] Samarin A. Yu., “Space localization of the quantum particle”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 1(30), 387–397 (In Russian) | DOI

[14] Samarin A. Yu., Macroscopic Body Motion in Terms of Quantum Evolution, 2014, arXiv: [quant-ph] 1408.0340

[15] Meleshko N. V., Samarin A. Yu., “Complex time transformation pecularities for wave function collapse description using quntum path integrals”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 4(37), 170–177 (In Russian) | DOI | Zbl

[16] Ghirardi G. C., Weber T., “Quantum mechanics and faster-than-light communication: Methodological considerations”, Nuov. Cim. B, 78:1 (1983), 9–20 | DOI

[17] Gisin N., “Stochastic quantum dynamics and relativity”, Helvetica Physica Acta, 62 (1989), 363–371 Retrieved from (November 24, 2017) http://www.unige.ch/gap/quantum/publications:bib:gisin1989 | MR

[18] Maudlin T., “What Bell did”, J. Phys. A: Math. Theor., 47:42 (2014), 424010 | DOI | MR | Zbl

[19] Werner R. F., “Comment on ‘What Bell did’”, J. Phys. A: Math. Theor., 47:42 (2014), 424011 | DOI | MR | Zbl

[20] Samarin A. Yu., “Quantum particle motion in physical space”, Adv. Studies Theor. Phys., 8:1 (2014), 27–34, arXiv: [quant-ph] 1407.3559 | DOI

[21] Eberhard P. H., “Bell's theorem and the different concepts of locality”, Nuov. Cim. B, 46:2 (1978), 392–419 | DOI | MR | Zbl