Dynamic stability of deformable elements of designs at supersonic mode of flow
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 1, pp. 96-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stability of deformable element of a construction in the form of a plate-strip with its flowing by supersonic flow of ideal gas is investigated. Adopted in paper definitions of stability are consistent with the concept of stability of dynamical systems by Lyapunov. For the description of dynamics of an elastic body the nonlinear mathematical model taking into account transverse and longitudinal deformations of the elastic plate is used. The model describes the associated system of partial differential equations for two unknown functions of deformations. Aerodynamic pressure upon a plate is defined according to Ilyushin's “piston” theory. On the base of the built functional for the case of hinged motionless fixing the ends of the plate the sufficient conditions of stability of the solution of the system of equations describing the length-cross oscillations of the plate are obtained. The estimation of the amplitude of deformations depending on initial conditions is made. On a specific example of one mechanical system the using of the proved theorems and estimates is shown.
Keywords: aerohydroelasticity, mathematical modeling, dynamic stability, elastic plate, supersonic flow of gas, system of the partial differential equations, functional.
@article{VSGTU_2018_22_1_a5,
     author = {P. A. Vel'misov and A. V. Ankilov},
     title = {Dynamic stability of deformable elements of designs at supersonic mode of flow},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {96--115},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a5/}
}
TY  - JOUR
AU  - P. A. Vel'misov
AU  - A. V. Ankilov
TI  - Dynamic stability of deformable elements of designs at supersonic mode of flow
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2018
SP  - 96
EP  - 115
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a5/
LA  - ru
ID  - VSGTU_2018_22_1_a5
ER  - 
%0 Journal Article
%A P. A. Vel'misov
%A A. V. Ankilov
%T Dynamic stability of deformable elements of designs at supersonic mode of flow
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2018
%P 96-115
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a5/
%G ru
%F VSGTU_2018_22_1_a5
P. A. Vel'misov; A. V. Ankilov. Dynamic stability of deformable elements of designs at supersonic mode of flow. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 1, pp. 96-115. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_1_a5/

[1] Algazin S. D., Kiiko I. A., Flatter plastin i obolochek [Flutter of plates and shells], Nauka, Moscow, 2006, 247 pp. (In Russian)

[2] Vedeneev V. V., “Effect of damping on flutter of simply supported and clamped panels at low supersonic speeds”, J. Fluids Structs., 40 (2013), 366–372 | DOI

[3] Guvernyuk S. V., Zubkov A. F., Simonenko M. M., “Experimental Investigation of the Supersonic Flow over an Axisymmetric Ring Cavity”, J. Eng. Phys. Thermophys., 89:3 (2016), 678–687 | DOI

[4] Gounko Y. P., “Patterns of steady axisymmetric supersonic compression flows with a Mach disk”, Shock Waves, 27:3 (2017), 495–506 | DOI

[5] Kiiko I. A., Pokazeev V. V., “On the formulation of the problem of strip oscillations and stability in supersonic gas flow”, Fluid Dyn., 44:1 (2009), 135–140 | DOI

[6] Ryakhovskiy A. I., Schmidt A. A., “MHD supersonic flow control: OpenFOAM simulation”, Proc. ISP RAS, 28:1 (2016), 197–206 | DOI

[7] Aulisa E., Ibragimov A., Kaya-Cekin E. Y., “Fluid structure interaction problem with changing thickness beam and slightly compressible fluid”, Discrete Continuous Dynamical Systems–S, 7:6 (2014), 1133–1148 | DOI | MR | Zbl

[8] Baghdasaryan G. Y., Mikilyan M. A., Saghoyan R. O., “Influence of supersonic gas flow on the amplitude of non-linear oscillations of rectangular plates”, Mechanics–Proceedings of National Academy of Sciences of Armenia, 69:4 (2016), 20–40 Retrieved from on 12 March 2018 http://mechanics.asj-oa.am/2168/ | MR

[9] Brehm C., Housman J. A., Kiris C. C., “Noise generation mechanisms for a supersonic jet impinging on an inclined plate”, J. Fluid Mech., 797 (2016), 802–850 | DOI | Zbl

[10] Filippi A. A., Skews B. W., “Supersonic flow fields resulting from axisymmetric internal surface curvature”, J. Fluid Mech., 2017, no. 831, 271–288 | DOI | MR

[11] Kounadis A. N., “Flutter instability and other singularity phenomena in symmetric systems via combination of mass distribution and weak damping”, Internat. J. Nonlinear. Mech., 42:1 (2007), 24–35 | DOI | MR | Zbl

[12] Willems S., Gülhan A. and Esser B., “Shock induced fluid-structure interaction on a flexible wall in supersonic turbulent flow”, Progress in Flight Physics, 2013, no. 5, 285–308 | DOI

[13] Ankilov A. V., Velmisov P. A., “Investigation of dynamic and stability of elastic element of construction in supersonic flow”, Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta, 2011, no. 3(57), Issue 1, 59–67 (In Russian)

[14] Velmisov P. A., Sudakov V. A., Ankilov A. V., “On the solution stability of initial value problem concerning evolution of a protective shield interacting with supersonic gas flow”, Vestnik Ulyanovskogo gosudarstvennogo tekhnicheskogo universiteta, 2013, no. 3, 45–52 (In Russian)

[15] Ankilov A. V., Velmisov P. A., “Investigation of stability of viscoelastic element of construction in supersonic flow”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 18:3 (2016), 80–90 (In Russian)

[16] Kollatz L., Zadachi na sobstvennye znachenia [Problems on eigenvalues], Nauka, Moscow, 1968, 504 pp. (In Russian) | MR

[17] Ankilov A. V., Velmisov P. A., Dinamika i ustoichivost' uprugikh plastin pri aerogidrodinamicheskom vozdeistvii [Dynamics and stability of elastic plates at aerohydrodynamical influence], Ulyanovsk State Technical Univ., Ulyanovsk, 2009, 220 pp. (In Russian)

[18] Ankilov A. V., Velmisov P. A., Funktsionaly Liapunova v nekotorykh zadachakh dinamicheskoi ustoichivosti aerouprugikh konstruktsii [Lyapunov functionals in some problems of dynamic stability of aeroelastic structures], Ulyanovsk State Technical Univ., Ulyanovsk, 2015, 146 pp. (In Russian)

[19] Ankilov A. V., Velmisov P. A., “Stability of solution of one nonlinear initial-boundary problem of aeroelasticity”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 2(31), 120–126 (In Russian) | DOI

[20] Ankilov A. V., Vel'misov P. A., “Stability of solutions to an aerohydroelasticity problem”, J. Math. Sci., 219:1 (2016), 14–26 | DOI | MR | Zbl