Forced axisymmetric oscillations of circular multilayer bimorph plates
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 4, pp. 773-785.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for calculating circular multilayer bimorph plates is presented and new analytical solutions of axisymmetric dynamic problems of direct and inverse piezoelectric effects are obtained. The cases of hinged and rigid fixing of the outer contour of the structure are considered. To investigate related linear problems, a mathematical apparatus is used in the form of a method of finite integral transformations. The constructed calculated relationships allow us to substantiate the constructive solutions of piezoceramic transducers. Built design ratio allows to prove the constructive solutions of multilayer piezoelectric ceramic transducers, namely, to choose the geometrical dimensions and physical characteristics of the materials used, define the dimensions of a split circular electrode, allowing most effectively to convert the external electrical stimulation into mechanical vibrations at various frequency. In addition, it is possible to perform stress-strain state, the nature of the change of the electric field and frequency range of the axisymmetric vibrations of the considered systems.
Keywords: bimorph plate, electroelasticity, nonstationary loading, integral transformations.
@article{VSGTU_2017_21_4_a11,
     author = {D. A. Shlyakhin and O. V. Ratmanova},
     title = {Forced axisymmetric oscillations of circular multilayer bimorph  plates},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {773--785},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a11/}
}
TY  - JOUR
AU  - D. A. Shlyakhin
AU  - O. V. Ratmanova
TI  - Forced axisymmetric oscillations of circular multilayer bimorph  plates
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2017
SP  - 773
EP  - 785
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a11/
LA  - ru
ID  - VSGTU_2017_21_4_a11
ER  - 
%0 Journal Article
%A D. A. Shlyakhin
%A O. V. Ratmanova
%T Forced axisymmetric oscillations of circular multilayer bimorph  plates
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2017
%P 773-785
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a11/
%G ru
%F VSGTU_2017_21_4_a11
D. A. Shlyakhin; O. V. Ratmanova. Forced axisymmetric oscillations of circular multilayer bimorph  plates. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 4, pp. 773-785. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_4_a11/

[1] Sharapov V., “Bimorph and trimorph piezoelements”, Piezoceramic Sensors. Microtechnology and MEMS, Springer, Berlin, Heidelberg, 2011, 179–229 | DOI

[2] Sharapov V., Sotula Z., Kunickaya L., “Devices to control and diagnose bimorph piezoelements”, Piezo-Electric Electro-Acoustic Transducers. Microtechnology and MEMS, Springer, Cham, 2013, 191–212 | DOI

[3] Seeley C. E., Delgado E., Kunzman J., Bellamy D., “Miniature piezo composite bimorph actuator for elevated temperature operation”, International Mechanical Engineering Congress and Exposition (Seattle, Washington, USA, November 11–15, 2007), v. 10, Mechanics of Solids and Structures, Parts A and B, 2007, IMECE2007-44088, 405–415 | DOI

[4] Grinchenko V. T., Ulitko A. F., Shul'ga N. A., Mekhanika sviazannykh polei v elementakh konstruktsii [Mechanics of coupled fields in structural elements], Nauk. dumka, Kiev, 1989, 279 pp. (In Russian)

[5] Smits J. G., Dalke S. I., Cooney T. K., “The constituent equations of piezoelectric bimorphs”, Sensors and Actuators A: Physical, 28:1 (1991), 41–61 | DOI

[6] Vatul'yan A. O., Rynkova A. A, “A model of bending vibrations of piezoelectric bimorphs with split electrodes and its applications”, Mech. Solids, 42:4 (2007), 595–602 | DOI | MR

[7] Tsaplev V., Konovalov R., Abbakumov K., “Disk bimorph-type piezoelectric energy harvester”, Journal of Power and Energy Engineering, 3:4 (2015), 63–68 | DOI

[8] Tsaplev V. M., Konovalov R. S., “Frequency dependences of higher-order constants of piezoelectric ceramics”, Russ. J. Nondestruct. Test, 53:7 (2017), 485–492 | DOI

[9] Yanchevskiy I. V., “Minimizing deflections of round electroelastic bimorph plate under impulsive loading”, Problems of computational mechanics and strength of structures, 2011, no. 16, 303–313 (In Russian)

[10] Shlyakhin D. A., “Forced nonstationary axisymmetric vibrations of a piezoceramic thin bimorph plate”, Mech. Solids, 48:2 (2013), 178–185 | DOI

[11] Rashidifar M. A., Rashidifar A. A., “Vibrations analysis of circular plate with piezoelectric actuator using thin plate theory and Bessel function”, American Journal of Engineering, Technology and Society, 2:6 (2015), 140–156

[12] Jam J. E., Khosravi M., Namdara N., “An exact solution of mechanical buckling for functionally graded material bimorph circular plates”, Metall. Mater. Eng., 19:1 (2013), 45–63

[13] Jandaghiana A. A., Jafarib A. A., Rahmania O., “Vibrational response of functionally graded circular plate integrated with piezoelectric layers: An exact solution”, Engineering Solid Mechanics, 2:2 (2014), 120–130 | DOI

[14] Jurenas V., Bansevicius R., Navickaite S., “Piezoelectric bimorphs for laser shutter systems: optimization of dynamic characteristics”, Mechanika, 2010, no. 5(85), 44–47

[15] Senitskii Yu. E., Shlyakhin D. A., “The nonstationary axisymmetric problem of electroelasticity for a thick circular anisotropic piezoceramic plate”, Mech. Solids, 34:1 (1999), 66–74

[16] Shlyakhin D. A., “Forced axisymmetric vibrations of a thick circular rigidly fixed piezoceramic plate”, Mech. Solids, 49:4 (2014), 435–444 | DOI

[17] Shul'ga N. A., Bolkisev A. M., Kolebaniia p'ezoelektricheskikh tel [Fluctuations of Piezoelectric Bodies], Nauk. dumka, Kiev, 1990, 228 pp. (In Russian)

[18] Shlyakhin D. A., Kazakova O. V., “A dynamic axially symmetric goal and its extended solution for a fixed rigid circular multi-layer plate”, Procedia Engineering, 153 (2016), 662–666 | DOI

[19] Shlyakhin D. A., “Dynamic axisymmetric problem direct piezoeffect for round bimorph plate”, PNRPU Mechanics Bulletin, 2017, no. 1, 164–180 (In Russian) | DOI

[20] Sneddon I. N., Fourier Transforms, McGraw-Hill Book Company, Inc., New York, 1950 | MR | Zbl

[21] Senitskii Yu. E., Issledovanie uprugogo deformirovaniia elementov konstruktsii pri dinamicheskikh vozdeistviiakh metodom konechnykh integral'nykh preobrazovanii [Investigation of the Elastic Deformation of Construction Elements under Dynamic Actions by the Method of Finite Integral Transforms], Saratov Univ., Saratov, 1985, 174 pp. (In Russian)

[22] Vladimirov V. S., Obobshchennye funktsii v matematicheskoi fizike [Generalized Functions in Mathematical Physics], Nauka, Moscow, 1978, 318 pp. (In Russian) | MR

[23] Shlyakhin D. A., “The compelled axisymmetric bending fluctuations of thick round rigid plate”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2011, no. 8(89), 142–152 (In Russian)