The row-oriented form of the regularized Kaczmarz's method
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 3, pp. 546-555.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents the new iterative method for solving the standard Tikhonov regularization problem. The basis of the method is the application the projection Kaczmarz algorithm to the augmented regularized normal system of equations. The use of the augmented regularized normal system of equations, instead the system of regularized normal equations, makes it possible to significantly reduce the spectral condition number of the original problem. The paper presents the row-oriented form of the regularized Kaczmarz algorithm. This form of the regularized Kaczmarz algorithm allows to solve problems in which the data are received sequentially (line by line). The proposed algorithm makes it possible to effectively calculate solutions of problems with sparse matrices of large and superlarge dimensions. The comparison's results of the proposed row-oriented form of the algorithm with the column-oriented form of this algorithm are presented. By considering a certain classes of problems, the paper demonstrates that the proposed form of the regularized algorithm allows to reduce the number of iterations in comparison with the column-oriented form of the algorithm.
Keywords: iterative methods, projection algorithms, Tikhonov's regularization, Kaczmarz algorithm, row-oriented form of the regularized Kaczmarz's algorithm.
@article{VSGTU_2017_21_3_a9,
     author = {A. I. Zhdanov and Yu. V. Sidorov},
     title = {The row-oriented form of the regularized {Kaczmarz's} method},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {546--555},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a9/}
}
TY  - JOUR
AU  - A. I. Zhdanov
AU  - Yu. V. Sidorov
TI  - The row-oriented form of the regularized Kaczmarz's method
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2017
SP  - 546
EP  - 555
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a9/
LA  - ru
ID  - VSGTU_2017_21_3_a9
ER  - 
%0 Journal Article
%A A. I. Zhdanov
%A Yu. V. Sidorov
%T The row-oriented form of the regularized Kaczmarz's method
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2017
%P 546-555
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a9/
%G ru
%F VSGTU_2017_21_3_a9
A. I. Zhdanov; Yu. V. Sidorov. The row-oriented form of the regularized Kaczmarz's method. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 3, pp. 546-555. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a9/

[1] Saad Y., Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2003, xviii+528 pp. | DOI | MR | Zbl

[2] Kaczmarz S., “Angenäherte Auflösung von Systemen linearer Gleichungen”, Bull. Int. Acad. Polon. Sci. A, 1937, no. 35, 355–357 ; Kaczmarz S., “Approximate solution of systems of linear equations”, Int. J. Control, 57:6 (1993), 1269–1271 | Zbl | DOI | MR | Zbl

[3] Gordon R., Bender R., Herman G. T., “Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography”, J. Theor. Biol., 29:3 (1970), 477–481 | DOI

[4] Strohmer T., Vershynin R., “A Randomized Kaczmarz Algorithm with Exponential Convergence”, J. Fourier Anal. Appl., 15 (2009), 262–278, arXiv: [math.NA] math/0702226 | DOI | MR | Zbl

[5] Needell D., “Randomized Kaczmarz solver for noisy linear systems”, BIT Numer. Math., 50:2 (2010), 395–403, arXiv: [math.NA] 0902.0958 | DOI | MR | Zbl

[6] Needell D., Tropp J. A., “Paved with good intentions: Analysis of randomized block Kaczmarz method”, Linear Alg. Appl., 441 (2014), 199–221, arXiv: [math.NA] 1208.3805 | DOI | MR | Zbl

[7] Needell D., Zhao R., Zouzias A., “Randomized block Kaczmarz method with projection for solving least squares”, Linear Alg. Appl., 484 (2015), 322–343, arXiv: [math.NA] 1403.4192 | DOI | MR | Zbl

[8] Gower R., Richtarik P., “Randomized Iterative Methods for Linear Systems”, SIAM. J. Matrix Anal. Appl., 36:4 (2015), 1660–1690, arXiv: [math.NA] 1506.03296 | DOI | MR | Zbl

[9] Wei K., “Solving systems of phaseless equations via Kaczmarz methods: a proof of concept study”, Inverse Problems, 31:12 (2015), 125008, arXiv: [math.NA] 1502.01822 | DOI | MR | Zbl

[10] Shin Y., Xiu D., “A Randomized Algorithm for Multivariate Function Approximation”, SIAM J. Sci. Comput., 39:3 (2017), A983–A1002 | DOI | MR | Zbl

[11] Ivanov A., Zhdanov A., “Kaczmarz algorithm for Tikhonov regularization problem”, Appl. Math. E-Notes, 13 (2013), 270–276 | MR | Zbl

[12] Zhdanov A. I., “The method of augmented regularized normal equations”, Comput. Math. Math. Phys., 52:2 (2012), 194–197 | DOI | MR | Zbl

[13] Tanabe K., “Projection Method for Solving a Singular System of Linear Equations and its Applications”, Numer. Math., 17:3 (1971), 203–214 | DOI | MR | Zbl

[14] Il'in V. P., “On the Kaczmarz iterative method and its generalizations”, J. Appl. Industr. Math., 2:3 (2008), 357–366 | DOI | MR | Zbl

[15] Zhdanov A. I., Sidorov Yu. V., “Parallel implementation of a randomized regularized Kaczmarz's algorithm”, Computer Optics, 39:4 (2015), 536–541 (In Russian) | DOI

[16] Liu Ji, Wright S. J., Sridhar S., An Asynchronous Parallel Randomized Kaczmarz Algorithm, 2014, arXiv: [math.NA] 1401.4780

[17] Hefny A., Needell D., Ramdas A., “Rows versus Columns: Randomized Kaczmarz or Gauss–Seidel for Ridge Regression”, SIAM J. Sci. Comput., 39:5 (2017), S528–S542, arXiv: [math.NA] 1507.05844 | DOI | MR | Zbl