The problem with Saigo operators for a hyperbolic equation that degenerates inside the domain
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 3, pp. 473-480.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlocal problem is investigated for a degenerate hyperbolic equation $$ |y|^{m} u_{xx}-u_{yy}+a |y|^{\frac{m}{2}-1} u_{x}=0 $$ in a domain bounded by the characteristics of this equation. The boundary condition for this problem contains a linear combination of generalized fractional integro-differentiation operators with a hypergeometric Gauss function in the kernel. The uniqueness of the solution is proved using the Tricomi method. The existence of a solution is equivalent to the solvability of a singular integral equation with a Cauchy kernel.
Keywords: boundary value problem, fractional integro-differentiation operators, Gauss function, singular integral equation.
@article{VSGTU_2017_21_3_a4,
     author = {O. A. Repin},
     title = {The problem with {Saigo} operators for a hyperbolic equation that degenerates inside the domain},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {473--480},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a4/}
}
TY  - JOUR
AU  - O. A. Repin
TI  - The problem with Saigo operators for a hyperbolic equation that degenerates inside the domain
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2017
SP  - 473
EP  - 480
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a4/
LA  - ru
ID  - VSGTU_2017_21_3_a4
ER  - 
%0 Journal Article
%A O. A. Repin
%T The problem with Saigo operators for a hyperbolic equation that degenerates inside the domain
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2017
%P 473-480
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a4/
%G ru
%F VSGTU_2017_21_3_a4
O. A. Repin. The problem with Saigo operators for a hyperbolic equation that degenerates inside the domain. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 3, pp. 473-480. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a4/

[1] Smirnov M. M., Vyrozhdaiushchiesia giperbolicheskie uravneniia [Degenerate hyperbolic equations], Vyssh. shk., Minsk, 1977 (In Russian)

[2] Nakhushev A. M., Zadacha so smeshcheniem dlia uravnenii v chastnykh proizvodnykh [Problems with Displacement for Partial Differential Equation], Nauka, Moscow, 2006 (In Russian)

[3] Saigo M., “A remark on integral operators involving the Gauss hypergeometric function”, Math. Rep. College General Educ., Kyushu Univ., 11:2 (1978), 135–143 | MR | Zbl

[4] Repin O. A., Kumykova S. K., “A nonlocal problem for a mixed-type equation whose order degenerates along the line of change of type”, Russian Math. (Iz. VUZ), 57:8 (2013), 49–56 | DOI | Zbl

[5] Repin O. A., Kumykova S. K., “Interior-boundary value problem with Saigo operators for the gellerstedt equation”, Differ. Equ., 49:10 (2013), 1307–1316 | DOI | Zbl

[6] Repin O. A., “On a boundary-value problem with Saigo operators for a mixed-type equation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:2 (2017), 271–277 (In Russian) | DOI | Zbl

[7] Repin O. A., Kumykova S. K., “Nonlocal problem for a equation of mixed type of third order with generalized operators of fractional integro-differentiation of arbitrary order”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2011, no. 4(25), 25–36 (In Russian) | DOI

[8] Kumykova S. K., “A boundary value problem with shift for a hyperbolic equation that is degenerate inside the domain”, Differ. Uravn., 16:1 (1980), 93–104 (In Russian) | MR | Zbl

[9] Repin O. A., Kumykova S. K., “Problem with generalized fractional differentiation operators for a hyperbolic equation degenerating in the interior of the domain”, Differ. Equ., 53:8 (2017), 1045–1053 | DOI | DOI | Zbl

[10] Muskhelishvili N. I., Singular integral equations. Boundary problems of function theory and their application to mathematical physics, Dover Publ., Inc., New York, 1992, 447 pp. | MR | MR