Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2017_21_3_a4, author = {O. A. Repin}, title = {The problem with {Saigo} operators for a hyperbolic equation that degenerates inside the domain}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {473--480}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a4/} }
TY - JOUR AU - O. A. Repin TI - The problem with Saigo operators for a hyperbolic equation that degenerates inside the domain JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2017 SP - 473 EP - 480 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a4/ LA - ru ID - VSGTU_2017_21_3_a4 ER -
%0 Journal Article %A O. A. Repin %T The problem with Saigo operators for a hyperbolic equation that degenerates inside the domain %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2017 %P 473-480 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a4/ %G ru %F VSGTU_2017_21_3_a4
O. A. Repin. The problem with Saigo operators for a hyperbolic equation that degenerates inside the domain. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 3, pp. 473-480. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a4/
[1] Smirnov M. M., Vyrozhdaiushchiesia giperbolicheskie uravneniia [Degenerate hyperbolic equations], Vyssh. shk., Minsk, 1977 (In Russian)
[2] Nakhushev A. M., Zadacha so smeshcheniem dlia uravnenii v chastnykh proizvodnykh [Problems with Displacement for Partial Differential Equation], Nauka, Moscow, 2006 (In Russian)
[3] Saigo M., “A remark on integral operators involving the Gauss hypergeometric function”, Math. Rep. College General Educ., Kyushu Univ., 11:2 (1978), 135–143 | MR | Zbl
[4] Repin O. A., Kumykova S. K., “A nonlocal problem for a mixed-type equation whose order degenerates along the line of change of type”, Russian Math. (Iz. VUZ), 57:8 (2013), 49–56 | DOI | Zbl
[5] Repin O. A., Kumykova S. K., “Interior-boundary value problem with Saigo operators for the gellerstedt equation”, Differ. Equ., 49:10 (2013), 1307–1316 | DOI | Zbl
[6] Repin O. A., “On a boundary-value problem with Saigo operators for a mixed-type equation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:2 (2017), 271–277 (In Russian) | DOI | Zbl
[7] Repin O. A., Kumykova S. K., “Nonlocal problem for a equation of mixed type of third order with generalized operators of fractional integro-differentiation of arbitrary order”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2011, no. 4(25), 25–36 (In Russian) | DOI
[8] Kumykova S. K., “A boundary value problem with shift for a hyperbolic equation that is degenerate inside the domain”, Differ. Uravn., 16:1 (1980), 93–104 (In Russian) | MR | Zbl
[9] Repin O. A., Kumykova S. K., “Problem with generalized fractional differentiation operators for a hyperbolic equation degenerating in the interior of the domain”, Differ. Equ., 53:8 (2017), 1045–1053 | DOI | DOI | Zbl
[10] Muskhelishvili N. I., Singular integral equations. Boundary problems of function theory and their application to mathematical physics, Dover Publ., Inc., New York, 1992, 447 pp. | MR | MR