Spectral characteristics of a nonlocal problem
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 3, pp. 423-436.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the boundary-value problem for a linear system of differential equations written in the form of differential-operator equations $$ aD_t u(t)+bBu(t)=f(t) $$ with nonlocal boundary conditions at $t$. Such a boundary value problem for a linear system of differential equations (including partial derivatives), we shall call nonlocal. The purpose of the article is to study the spectral characteristics of differential operators generated by the nonlocal task for the two linear systems of differential equations considered in a bounded region of finite-dimensional Euclidean space.
Keywords: boundary value problem, operator spectrum, elliptic systems, systems of differential equations, Riesz basis.
Mots-clés : nonlocal conditions
@article{VSGTU_2017_21_3_a2,
     author = {D. V. Kornienko},
     title = {Spectral characteristics of a nonlocal problem},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {423--436},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a2/}
}
TY  - JOUR
AU  - D. V. Kornienko
TI  - Spectral characteristics of a nonlocal problem
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2017
SP  - 423
EP  - 436
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a2/
LA  - ru
ID  - VSGTU_2017_21_3_a2
ER  - 
%0 Journal Article
%A D. V. Kornienko
%T Spectral characteristics of a nonlocal problem
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2017
%P 423-436
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a2/
%G ru
%F VSGTU_2017_21_3_a2
D. V. Kornienko. Spectral characteristics of a nonlocal problem. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 3, pp. 423-436. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_3_a2/

[1] Dezin A. A., Obshchie voprosy teorii granichnykh zadach [General questions of the theory of boundary value problems], Nauka, Moscow, 1980, 208 pp. (In Russian) | MR | Zbl

[2] A. A. Dezin, Differential operator equations. A method of model operators in the theory of boundary value problems, Tr. Mat. Inst. Steklova, 229, ed. V. S. Vladimirov, E. F. Mishchenko, Nauka, Moscow, 2000, 176 pp. (In Russian)

[3] Mikhailov V. P., “On Riesz bases in $\mathscr{L}_2(0,1)$”, Dokl. Akad. Nauk SSSR, 144:5 (1962), 981–984 (In Russian) | MR

[4] Bitsadze A. V., “On the uniqueness of the solution of the Dirichlet problem for elliptic partial differential equations”, Uspekhi Mat. Nauk, 3:6(28) (1948), 211–212 (In Russian) | MR | Zbl

[5] Bitsadze A. V., Boundary value problems for second order elliptic equations, North-Holland Series in Applied Mathematics and Mechanics, 5, North-Holland Publ., Amsterdam, 1968, 211 pp. | MR | MR | Zbl | Zbl

[6] Vishik M. I., “On strongly elliptic systems of differential equations”, Mat. Sb. (N.S.), 29(71):3 (1951), 615–676 | MR | Zbl

[7] Soldatov A. P., Mitin S. P., “On a class of strongly elliptic systems”, Differ. Equ., 33:8 (1997), 1125–1129 | MR | Zbl

[8] Soldatov A. P. On the first and second boundary value problems for elliptic systems on the plane., Differ. Equ., 39:5 (2003), 712–725 | DOI | MR | Zbl

[9] Kaczmarz S., Steinhaus H., Theorie der Orthogonalreihen, Monografie Matematyczne, 6, Chelsea Publ., New York, 1951, viii+296 pp. | Zbl

[10] Sadovnichii V. A., Theory of operators, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1991, xi+396 pp. | MR | MR | Zbl

[11] Kornienko D. V., “On a spectral problem for two hyperbolic systems of equations”, Differ. Equ., 42:1 (2006), 101–111 | DOI | MR | Zbl

[12] Kornienko D. V., “On the spectrum of the Dirichlet problem for systems of operator-differential equations”, Differ. Equ., 42:8 (2006), 1124–1133 | DOI | MR | Zbl