Finite-difference method for solving Tricomi problem for the Lavrent'ev--Bitsadze equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 2, pp. 221-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain an a priori estimate for solution of Tricomi problem for the Lavrent'ev–Bitsadze equation, from which the uniqueness of regular solution follows. Presented a numerical finite-difference method for solving the investigated problem. We obtain an a priori estimate for solution of the difference scheme, from which follows the second-order convergence.
Keywords: equation of mixed type, Tricomi problem, a priori estimate, difference scheme, order of approximation, method of energy inequalities.
@article{VSGTU_2017_21_2_a1,
     author = {Zh. A. Balkizov and A. A. Sokurov},
     title = {Finite-difference method for solving {Tricomi} problem for the {Lavrent'ev--Bitsadze} equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {221--235},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a1/}
}
TY  - JOUR
AU  - Zh. A. Balkizov
AU  - A. A. Sokurov
TI  - Finite-difference method for solving Tricomi problem for the Lavrent'ev--Bitsadze equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2017
SP  - 221
EP  - 235
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a1/
LA  - ru
ID  - VSGTU_2017_21_2_a1
ER  - 
%0 Journal Article
%A Zh. A. Balkizov
%A A. A. Sokurov
%T Finite-difference method for solving Tricomi problem for the Lavrent'ev--Bitsadze equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2017
%P 221-235
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a1/
%G ru
%F VSGTU_2017_21_2_a1
Zh. A. Balkizov; A. A. Sokurov. Finite-difference method for solving Tricomi problem for the Lavrent'ev--Bitsadze equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 2, pp. 221-235. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a1/

[1] Lavrent'ev M. A., Bitsadze A. V., “On the problem of equations of mixed type”, Doklady Akad. Nauk SSSR, 70:3 (1950), 373–376 (In Russian) | MR | Zbl

[2] Bitsadze A. V., Uravneniia smeshannogo tipa [Equations of mixed type], USSR Academy of Sciences Publ., Moscow, 1959, 164 pp. (In Russian)

[3] Chibrikova L. I., “New method of solving one boundary value problem of the mixed type”, Uchenye Zapiski Kazanskogo Universiteta, 117, no. 9, Kazan State University, Kazan, 1957, 44–47 (In Russian)

[4] Chibrikova L. I., “To the solution of the Tricomi boundary value problem for equation ${u_{xx}+\operatorname{sgn}yu_{yy}=0}$”, Uchenye Zapiski Kazanskogo Universiteta, 117, no. 9, Kazan State University, Kazan, 1957, 48–51 (In Russian)

[5] Lerner M. E., Pul'kin S. P., “Uniqueness of a solution of problems with Frankl' and Tricomi conditions for the general Lavrent'ev–Bitsadze equation”, Differ. Uravn., 2:9 (1966), 1255–1263 (In Russian) | MR | Zbl

[6] Krikunov Yu. M., “On the Tricomi problem for the Lavrent'ev–Bitsadze equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 2, 76–81 (In Russian) | MR | Zbl

[7] E. I. Moiseev, “The Tricomi problem for the Lavrent'ev–Bitsadze equation”, Differ. Uravn., 17:2 (1981), 325–338 (In Russian) | MR | Zbl

[8] Kaziev V. M., “The Tricomi problem for a loaded Lavrent'ev–Bitsadze equation”, Differ. Uravn., 15:1 (1979), 173–175 (In Russian) | MR | Zbl

[9] Sabitov K. B., “The Tricomi problem for the Lavrent'ev–Bitsadze equation with a spectral parameter”, Differ. Uravn., 22:11 (1986), 1977–1984 (In Russian) | MR | Zbl

[10] Soldatov A. P., “Dirichlet-type problems for the Lavrent'ev–Bitsadze equation”, Differ. Equ., 30:11 (1994), 1846–1853 | MR | Zbl

[11] Repin O. A., “The Tricomi problem for an equation of mixed type in a domain whose elliptic part is a half-strip”, Differ. Equ., 32:4 (1996), 571–574 | MR | Zbl

[12] Lerner M. E., Repin O. A., “A problem with two nonlocal boundary conditions for a mixed-type equation”, Siberian Math. J., 40:6 (1999), 1064–1078 | DOI | MR | Zbl

[13] Nakhusheva Z. A., “On the Tricomi Problem for the Lavrent'ev–Bitsadze Equation with a Nonlocal Transmission Condition”, Differ. Equ., 41:10 (2005), 1505–1508 | DOI | MR | Zbl

[14] Ladyzhenskaya O. A., “On a method of approximate solution of the Lavrent'ev–Bicadze problem”, Uspekhi Mat. Nauk, 9:4(62) (1954), 187–189 (In Russian) | MR | Zbl

[15] Khalilov Z. I., “Solution of the problem for a mixed-type equation by the grid method”, Doklady Akad. Nauk AzSSR, 9:4 (1953), 189–190 (In Russian)

[16] Karmanov V. G., “On a boundary problem for an equation of mixed type”, Doklady Akad. Nauk SSSR, 95:3 (1954), 439–442 (In Russian) | MR | Zbl

[17] Filippov A. F., “On the application of the method of finite differences to the solution of the problem of Tricomi”, Izv. Akad. Nauk SSSR Ser. Mat., 21:1 (1957), 73–88 (In Russian) | MR | Zbl

[18] Ogawa H., “On Difference Methods for the Solution of a Tricomi Problem”, Trans. Amer. Math. Soc., 100:3 (1961), 404–424 | DOI | MR | Zbl

[19] Sabitov K. B., Mugafarov M. F., “Extremal properties of solutions of the Tricomi difference problem for a difference system of equations of mixed type and their applications”, Russian Math. (Iz. VUZ), 49:4 (2005), 53–66 | MR | Zbl

[20] Frankl F. I., “Two gas-dynamical applications of the Lavrentiev–Bitsadze boundary value problem”, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom, 6:11 (1951), 3–7 (In Russian)

[21] Samarskii A. A., Teoriia raznostnykh skhem [Theory of difference schemes], Nauka, Moscow, 1983, 616 pp. (In Russian) | MR | Zbl