A large-scale layered stationary convection of~a~incompressible viscous fluid under the action
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 1, pp. 180-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

The exact solution of the definition of convective motions in a layered large-scale flows of a viscous incompressible fluid in a steady case is considered. It was shown that the received problem is, firstly, overdetermined and, secondly, a nonlinear (due to the presence of members of a convective derivative in a heat conduction equation). Also it was shown that the solution class choice can eliminate the override, and the specification of a boundary conditions can reduce the problem to the study of a thermal capillary convection (convection Benard–Marangoni). Then conditions of the counterflow appearance are defined, and their possible amount is investigated. In addition, the analysis of the nonvortex region in the test flow is made. And it was shown that under certain combinations of system parameters the vortex can change the direction.
Keywords: layered flow, counterflow
Mots-clés : stagnant point, exact solution.
@article{VSGTU_2017_21_1_a9,
     author = {N. V. Burmasheva and E. Yu. Prosviryakov},
     title = {A large-scale layered stationary convection of~a~incompressible viscous fluid under the action},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {180--196},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a9/}
}
TY  - JOUR
AU  - N. V. Burmasheva
AU  - E. Yu. Prosviryakov
TI  - A large-scale layered stationary convection of~a~incompressible viscous fluid under the action
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2017
SP  - 180
EP  - 196
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a9/
LA  - ru
ID  - VSGTU_2017_21_1_a9
ER  - 
%0 Journal Article
%A N. V. Burmasheva
%A E. Yu. Prosviryakov
%T A large-scale layered stationary convection of~a~incompressible viscous fluid under the action
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2017
%P 180-196
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a9/
%G ru
%F VSGTU_2017_21_1_a9
N. V. Burmasheva; E. Yu. Prosviryakov. A large-scale layered stationary convection of~a~incompressible viscous fluid under the action. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 1, pp. 180-196. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a9/

[1] Aristov S. N., Knyazev D. V., Polyanin A. D., “Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables”, Theoretical Foundations of Chemical Engineering, 43:5 (2009), 642–662 | DOI

[2] Dorrepaal J. M., “An exact solution of the Navier-Stokes equation which describes non-orthogonal stagnation-point flow in two dimensions”, Journal of Fluid Mechanics, 163:1 (1986), 141–147 | DOI | MR | Zbl

[3] Stuart J. T., “The viscous flow near a stagnation point when the external flow has uniform vorticity”, Journal of the Aerospace Sciences, 26:2 (1959), 124–125 | DOI | Zbl

[4] Riesco-Chueca P., de la Mora J. F., “Brownian motion far from equilibrium: a hypersonic approach”, Journal of Fluid Mechanics, 214 (1990), 639–663 | DOI | Zbl

[5] Gushchin V. A., Rozhdestvenskaya T. I., “Numerical study of the effects occurring near a circular cylinder in stratified fluid flows with short buoyancy periods”, J. Appl. Mech. Tech. Phys., 52:6 (2011), 905–911 | DOI | Zbl

[6] Shtokman V. B., Ekvatorial'nye protivotecheniia v okeanakh [Equatorial Countercurrents in the Oceans], Gidrometeoizdat, Leningrad, 1948, 156 pp. (In Russian)

[7] Korotaev G. K., Mikhailova E. N., Shapiro N. B., Teoriia ekvatorial'nykh protivotechenii v Mirovom okeane [Theory of Equatorial Countercurrents in the World Ocean], Nauk. dumka, Kiev, 1986, 208 pp. (In Russian)

[8] Korotaev G. K., Teoreticheskoe modelirovanie sinopticheskoi izmenchivosti okeana [Theoretical Simulation of the Synoptic Variability of the Ocean], Nauk. dumka, Kiev, 1988, 160 pp. (In Russian)

[9] Bondarenko A. L., Krupnomasshtabnye techeniia i dolgoperiodnye volny Mirovogo okeana [The large-scale flows and long-period waves of the World Ocean], Moscow, 2011, 163 pp. (In Russian)

[10] Yarullin A. R., “The results of experimental studies on a two-phase flow bundle in horizontal wells with a variable-sign trajectory”, Karotazhnik, 2014, no. 9(243), 63–71 (In Russian)

[11] Hiemenz K., “Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder”, Dingler's Politech. J., 326 (1911), 321–324 http://dingler.culture.hu-berlin.de/article/pj326/ar326114

[12] Ekman V. W., “On the Influence of the Earth's Rotation on Ocean-Currents”, Ark. Mat. Astron. Fys., 2:11 (1905), 1–52 http://jhir.library.jhu.edu/handle/1774.2/33989

[13] Charney J. G., “Non-linear theory of a wind-driven homogeneous layer near the equator”, Deep Sea Research, 6 (1960), 303–310 | DOI

[14] Stommel H., “Wind-drift near the equator”, Deep Sea Research, 6 (1960), 298–302 | DOI

[15] Aristov S. N., Frik P. G., “Nonlinear effects of the Ekman layer on the dynamics of large-scale eddies in shallow water”, J. Appl. Mech. Tech. Phys., 32:2 (1991), 189–194 | DOI

[16] Ingel' L. Kh., Aristov S. N., “The class of exact solutions of nonlinear problems on thermal circulation associated with volumetric heat release in the atmosphere”, Tr. In-ta eksperim. meteorol., 1996, no. 27(162), 142–157 (In Russian) | MR

[17] Aristov S. N., Shvarts K. G., Vikhrevye techeniia advektivnoi prirody vo vrashchaiushchemsia sloe zhidkosti [Vortical Flows of Advective Nature in a Rotating Fluid Layer], Perm State Univ., Perm, 2006, 155 pp. (In Russian)

[18] Aristov S. N., Shvarts K. G., Vikhrevye techeniia v tonkikh sloiakh zhidkosti [Vortical Flows in Thin Fluid Layers], Vyatka State Univ., Kirov, 2011, 207 pp. (In Russian)

[19] Aristov S. N., Shvarts K. G., “Advective flow in a rotating liquid film”, J. Appl. Mech. Tech. Phys., 57:1 (2016), 188–194 | DOI | DOI | Zbl

[20] Aristov S. N., Prosviryakov E. Yu., “A new class of exact solutions for three-dimensional thermal diffusion equations”, Theor. Found. Chem. Eng., 50:3 (2016), 286–293 | DOI | DOI

[21] Aristov S. N., Prosviryakov E. Yu., “Inhomogeneous Couette flow”, Nelin. Dinam., 10:2 (2014), 177–182 (In Russian) | DOI | Zbl

[22] Aristov S. N., Prosviryakov E. Yu., “Large-scale flows of viscous incompressible vortical fluid”, Russ. Aeronaut., 58:4 (2015), 413–418 | DOI

[23] Aristov S. N., Prosviryakov E. Yu., “Unsteady layered vortical fluid flows”, Fluid Dyn., 51:2 (2016), 148–154 | DOI | DOI | MR | Zbl

[24] Aristov S. N., Prosviryakov E. Yu., “On laminar flows of planar free convection”, Nelin. Dinam., 9:4 (2013), 651–657 (In Russian) | DOI

[25] Aristov S. N., Prosviryakov E. Yu., Spevak L. F., “Unsteady-state Bénard–Marangoni convection in layered viscous incompressible flows”, Theor. Found. Chem. Eng., 50:2 (2016), 132–141 | DOI | DOI

[26] Aristov S. N., Prosviryakov E. Yu., Spevak L. F., “Nonstationary laminar thermal and solutal Marangoni convection of a viscous fluid”, Vychislitel'naia mekhanika sploshnykh sred [Computational Continuum Mechanics], 8:4 (2015), 445-456 (In Russian) | DOI

[27] Andreev V. K., Resheniia Birikha uravnenii konvektsii i nekotorye ego obobshcheniia [Birikh Solutions to Convection Equations and Some of its Extensions], The ICM SB RAS Preprint no. 1–10, Krasnoyarsk, 2010, 68 pp. (In Russian)

[28] Andreev V. K., Bekezhanova V. B., “Stability of non-isothermal fluids (Review)”, J. Appl. Mech. Tech. Phys., 54:2 (2013), 171–184 | DOI | MR | Zbl

[29] Andreev V. K., Stepanova I. V., “Unidirectional flows of binary mixtures within the framework of the Oberbeck–Boussinesq model”, Fluid Dyn., 51:2 (2016), 136–147 | DOI | DOI | MR | Zbl

[30] Goncharova O. N., Kabov O. A., “Gravitational-thermocapillary convection of fluid in the horizontal layer in co-current gas flow”, Dokl. Phys., 54:5 (2009), 242–247 | DOI | MR | MR | Zbl

[31] Goncharova O. N., Rezanova E. V., “Example of an exact solution of the stationary problem of two-layer flows with evaporation at the interface”, J. Appl. Mech. Tech. Phys., 55:2 (2014), 247–257 | DOI | MR | Zbl

[32] Birikh R. V., Pukhnachev V. V., “An axial convective flow in a rotating tube with a longitudinal temperature gradient”, Dokl. Phys., 56:1 (2011), 47–52 | DOI | MR | MR

[33] Birikh R. V., Pukhnachev V. V., Frolovskaya O. A., “Convective flow in a horizontal channel with non-Newtonian surface rheology under time-dependent longitudinal temperature gradient”, Fluid Dyn., 50:1 (2015), 173–179 | DOI | MR | Zbl

[34] Pukhnachev V. V., “Non-stationary Analogues of the Birikh Solution”, Izvestiia AltGU, 2011, no. 1–2, 62–69 (In Russian)

[35] Ryzhkov I. I., Termodiffuziia v smesiakh: uravneniia, simmetrii, resheniia i ikh ustoichivost' [Thermodiffusion in Mixtures: Equations, Symmetries, Solutions and its Stability], Novosibirsk, 2013, 200 pp. (In Russian)

[36] Ostroumov G. A., Free convection under the condition of the internal problem, NACA Technical Memorandum 1407, National Advisory Committee for Aeronautics, Washington, 1958 | MR

[37] Birikh R. V., “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 7:3 (1966), 43–44 | DOI

[38] Gershuni G. Z., Zhukhovitskii E. M., Convective Stability of Incompressible Fluids, Israel Program for Scientific Translations, Keter Publishing House, Jerusalem, 1976, 330 pp.

[39] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Editorial URSS, M., 2003, 416 pp. ; Arnold V. I., Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1978, x+462 pp ; 1989, xvi+519 pp | MR | DOI | MR | Zbl | DOI