Mathematical simulation for strain-stress state of optical telescope stable-size composite elements
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 4, pp. 707-729.

Voir la notice de l'article provenant de la source Math-Net.Ru

Designing issues of optical telescope stable-size composite elements have been considered. Staging of design calculation for composite structural elements has been described. Basic relations of composite material micro-mechanics have been represented. Specifics of mathematical simulation taking into account assumptions made have been described by example of developed framework of electro-optical system with one-side enforcement by ribs. Results of experimental determination of carbon-filled plastic characteristics used in design of stable-size optical telescope frame structure have been represented; advantages of finite-element method as one of the basic methods for solving the boundary value problem in applied mechanics have been reflected. Reasonableness of analytical approach using in the initial development stage in order to shorten the period of design has been demonstrated. The leading part of finite-element simulation has been determined in behavior prognostication of structures at different operating stages. Stable-size supporting composite frameworks developed taking into account defined sequence of structural design have been showed. Described staging of structure making has been allowed to process and systematize data during design and experimental execution, refine structural model parameters, increase the confidence level and verify it.
Keywords: large-size composite structures, composite structure integrity concept, stable-size supporting structure, optical telescope, parametric analysis of structure, finite-element method, mathematical simulation, staging of stable-size structures.
@article{VSGTU_2016_20_4_a9,
     author = {V. E. Bitkin and O. G. Zhidkova and A. V. Denisov and A. V. Borodavin and D. V. Mityushkina and A. V. Rodionov and A. S. Nonin},
     title = {Mathematical simulation for strain-stress state of optical telescope stable-size composite elements},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {707--729},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a9/}
}
TY  - JOUR
AU  - V. E. Bitkin
AU  - O. G. Zhidkova
AU  - A. V. Denisov
AU  - A. V. Borodavin
AU  - D. V. Mityushkina
AU  - A. V. Rodionov
AU  - A. S. Nonin
TI  - Mathematical simulation for strain-stress state of optical telescope stable-size composite elements
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 707
EP  - 729
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a9/
LA  - ru
ID  - VSGTU_2016_20_4_a9
ER  - 
%0 Journal Article
%A V. E. Bitkin
%A O. G. Zhidkova
%A A. V. Denisov
%A A. V. Borodavin
%A D. V. Mityushkina
%A A. V. Rodionov
%A A. S. Nonin
%T Mathematical simulation for strain-stress state of optical telescope stable-size composite elements
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 707-729
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a9/
%G ru
%F VSGTU_2016_20_4_a9
V. E. Bitkin; O. G. Zhidkova; A. V. Denisov; A. V. Borodavin; D. V. Mityushkina; A. V. Rodionov; A. S. Nonin. Mathematical simulation for strain-stress state of optical telescope stable-size composite elements. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 4, pp. 707-729. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a9/

[1] Chung D. D.L., Carbon Fiber Composites, Butterworth-Heinemann, Boston, 1994, x+215 pp. | DOI

[2] Edie D. D., Diefendorf R. J., “Carbon Fiber Manufacturing”, Carbon–Carbon Materials and Composites, eds. John D. Buckley, Dan D. Edie, Noyes Publications, Park Ridge, New Jersey, 1993, 19–39 | DOI

[3] Fitzer E., Manocha L. M., Carbon Reinforcements and Carbon/Carbon Composites, Springer, Berlin, 1998, xii+344 pp. | DOI

[4] Sairajan K. K., Nair P. S., “Design of low mass dimensionally stable composite base structure for a spacecraft”, Composites Part B: Engineering, 42:2 (2011), 280–288 | DOI

[5] Le Riche R., Gaudin J., “Design of dimensionally stable composites by evolutionary optimization”, Composite Structures, 41:2 (1998), 97–111 | DOI

[6] Molodtsov G. A., Bitkin V. E., Simonov V. F., Urmansov F. F., Formostabil'nye i intellektual'nye konstruktsii iz kompozitsionnykh materialov [Dimensionally stable and smart structures made of composite materials], Mashinostroenie, Moscow, 2000, 352 pp. (In Russian)

[7] Aydin L., Aydin O., Artem H. S., Mert A., “Design of dimensionally stable composites using efficient global optimization method”, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 1464420716664921 | DOI

[8] Datashvili L., “Multifunctional and dimensionally stable flexible fibre composites for space applications”, Acta Astronautica, 66:7–8 (2010), 1081–1086 | DOI

[9] Klimakova L. A., Polovyi A. O., Zel'nev V. N., “Shape stability of spacecraft large-sized cfrp antenna platform with structure and stiffness asymmetry”, Mekhanika kompozitsionnykh materialov i konstruktsii, 17:2 (2011), 245–254 (In Russian)

[10] Bezmozgii I. M., Sofinskii A. N., Cherniagin A. G., “The simulation in problems of vibration strength of rocket and space hardware”, Kosmicheskaia tekhnika i tekhnologii, 2014, no. 3, 71–80 (In Russian)

[11] Bitkina E. V., Denisov A. V., Bitkin V. E., “Design engineering methods of creating of dimensionally stable space structures of integrated type made of composite materials”, Izvestiia Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 14:4(2) (2012), 555–560 (In Russian)

[12] Bitkin V. E., Denisov A. V., Denisova M. A., Zhidkova O. G., Nazarov E. V., Rogal'skaia O. I., Melent'ev A. V., Mizinova I. A., “Approbation of the technological complex of production the power and high-precision size-stable integrated type construction elements from fibrous composite materials”, Izvestiia Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 16:1(5) (2014), 1320–1327 (In Russian)

[13] MSC Nastran 2016 Quick Reference Guide, 2016 Retrieved September 28, 2016, from https://simcompanion.mscsoftware.com/infocenter/index?page=content&id=DOC10961&actp=LIST

[14] Vasil'ev V. V., Dobriakov A. A. , Dudchenko A. A., et al., Osnovy proektirovaniia i izgotovleniia konstruktsii letatel'nykh apparatov iz kompozitsionnykh materialov [Fundamentals of Design and Manufacture of Aircraft Structures using Composite Materials], Moscow Aviation Institute, Moscow, 1985, 218 pp. (In Russian)

[15] Vasil'ev V. V., Mekhanika konstruktsii iz kompozitsionnykh materialov [Mechanics of Composite Structures], Mashinostroenie, Moscow, 1988, 272 pp. (In Russian)

[16] Gardymov G. P., Meshkov E. V., Pchelintsev A. V., Lashmanov G. P., Afanas'ev Yu. A., Kompozitsionnye materialy v raketno-kosmicheskom apparatostroenii [Composite Materials in Launch Vehicle and Space Vehicle Structures], eds. Dr. Sci., Prof. G. P. Gardymov, Dr. Sci., Prof. E. V. Meshkov, SpetsLit, St. Petersburg, 1999, 271 pp. (In Russian)

[17] Komkov M. A., Tarasov V. A., Tekhnologiia namotki kompozitnykh konstruktsii raket i sredstv porazheniia [Technology of winding of composite structures of missiles and weapons of destruction], Bauman Moscow State Technical Univ., Moscow, 2011, 431 pp. (In Russian)

[18] Vorobei V. V., Voitkov N. I., “Certain applied problems of the mechanics of dimensionally stable structures made of composites”, Mechanics of Composite Materials, 26:2 (1990), 236–243 | DOI

[19] Zienkiewicz O. C., Taylor R. L., Zhu J. Z., The Finite Element Method: Its Basis and Fundamentals, Elsevier, Amsterdam, 2013, 714 pp. | DOI | Zbl

[20] Yakupov N. M., Kiyamov H. G., Yakupov S. N., Kiyamov I. H., “Modelling of elements of designs of difficult geometry by three-dimensional finite elements”, Mekhanika kompozitsionnykh materialov i konstruktsii, 17:1 (2011), 145–154 (In Russian)

[21] Aronov A. M., Danilov V. A., Nikiforov V. O., Savitskii A. M., Sokol'skii M. N., Optoelectronic systems for Earth remote sensing, Presentation Slides (January 23, 2007, Saint Petersburg), 2007 (In Russian) http://lomo-tech.ru/photos/lomo_kosm_otkr.pdf

[22] Shimkovich D. G., Raschet konstruktsii v MSC/NASTRAN for Windows [Calculation of structures in MSC/NASTRAN for Windows], DMK Press, Moscow, 2003, 448 pp. (In Russian)

[23] Chigarev A. V., Kravchuk A. S., Smaliuk A. F., ANSYS dlia inzhenerov [ANSYS to engineers], Mashinostroenie, Moscow, 2004, 510 pp. (In Russian)

[24] Ivanov S. E., Intellektual'nye programmnye kompleksy dlia tekhnicheskoi i tekhnologicheskoi podgotovki proizvodstva [Intelligent software packages for technical and technological preparation of production], Part 5. Systems engineering calculation and analysis of parts and assemblies, ed. D. D. Kulikov, St. Petersburg State Univ., ITMO Univ., St. Petersburg, 2011, 48 pp. (In Russian)

[25] Basov K. A., ANSYS: spravochnik pol'zovatelia [ANSYS User's guide], DMK Press, Moscow, 2005, 640 pp. (In Russian)