Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_4_a6, author = {A. A. Kostina and O. A. Plekhov and B. Venkatraman}, title = {Application of the energy-based criterion to the simulation of the fracture of the steel structures}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {656--674}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a6/} }
TY - JOUR AU - A. A. Kostina AU - O. A. Plekhov AU - B. Venkatraman TI - Application of the energy-based criterion to the simulation of the fracture of the steel structures JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 656 EP - 674 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a6/ LA - ru ID - VSGTU_2016_20_4_a6 ER -
%0 Journal Article %A A. A. Kostina %A O. A. Plekhov %A B. Venkatraman %T Application of the energy-based criterion to the simulation of the fracture of the steel structures %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 656-674 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a6/ %G ru %F VSGTU_2016_20_4_a6
A. A. Kostina; O. A. Plekhov; B. Venkatraman. Application of the energy-based criterion to the simulation of the fracture of the steel structures. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 4, pp. 656-674. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a6/
[1] Rabotnov Yu. N., “O mekhanizme dlitelnogo razrusheniya”, Voprosy prochnosti materialov i konstruktsii, AN SSSR, M., 1957, 5–7 (In Russian)
[2] Kachanov L. M., “On time of destruction under creep conditions”, Izv. AN SSSR. Otd. tekhn. nauk, 1958, no. 8, 26–31 (In Russian) | Zbl
[3] Lemaitre J., Desmorat R., Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures, Springer, Berlin, 2005, xxiii+380 pp. | DOI
[4] Piechnik S., Pachla H., “Law of continuous damage parameter for non-ageing materials”, Engng. Fract. Mech., 12:2 (1979), 199–209 | DOI
[5] Rousselier G., “Finite deformation constitutive relations including ductile damage”, Proc. of the IUTAM Symposium on Three-Dimensional Constitutive Relations and Ductile Fracture, Douran, France, 1981, 331–355
[6] Rousselier G., Devaux J. C., Mottet G., “Experimental validation of constitutive relations including ductile fracture damage”, Fracture 84 (New Delhi, India, 4–10 December 1984), v. 2, Proc. of the 6th International Conference on Fracture (ICF6), New Delhi, 1984, 1205–1213 | DOI
[7] Tang C. Y., Sheng W., Peng L. H., Lee T. C., “Characterization of isotropic damage using double scalar variables”, Int. J. Dam. Mech., 11:1 (2002), 3–25 | DOI
[8] Vakulenko A. A., Kachanov L. M., “Continuum model of medium with cracks”, Izv. AN SSSR. Mekh. Tverd. Tela, 1971, no. 4, 159–166 (In Russian)
[9] Radaev Yu. N., “Tensor measures and harmonic analysis of three-demensional damage state”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 1998, no. 2(8), 79–105 (In Russian) | Zbl
[10] Lubarda V. A., Krajcinovic D., “Damage tensors and the crack density distribution”, Int. J. Solids. Struct., 30:20 (1993), 2859–2877 | DOI | Zbl
[11] Chaboche J.-L., “Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage”, Int. J. Dam. Mech., 2:4 (1993), 311–329 | DOI
[12] Murakami S., “Notion of continuum damage mechanics and its application to anisotropic creep damage theory”, J. Eng. Mater. Technol., 1983, no. 105, 99–105 | DOI
[13] Stepanova L. V., Igonin S. A., “Description of deterioration processes: damage parameter of Y. N. Rabotnov: historical remarks, fundamental results and contemporary state”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2014, no. 3(114), 97–114 (In Russian) | Zbl
[14] Novozhilov V. V., “On fundamentals of equilibrium cracks theory in elastic bodies”, PMM, 1969, no. 5, 797–812 (In Russian) | Zbl
[15] Romanov A. N., “Energy criteria of failure under low-cycle loading. Report 1. Failure energy in the case of a small number of loading cycles”, Strength Mater., 6:1 (1974), 1–8 | DOI
[16] Sosnin O. V., “Energy version of the theory of creep and long-term (creep) strength. Creep and rupture of nonstrengthening materials. I”, Strength Mater., 5:5 (1973), 564–568 | DOI
[17] Nikitenko A. F., “Kinetic Theory of Creep and Creep-Rupture Strength Analysis of Structural Components. Part 2. Limiting State of Non-Uniformly Heated Structural Components”, Strength Mater., 37:6 (2005), 551–557 | DOI
[18] Farren W. S., Taylor G. I., “The heat developed during plastic extension of metals”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 107:743 (1925), 422–451 | DOI
[19] Taylor G. I., Quinney H., “The latent energy remaining in a metal after cold working”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 143:849 (1934), 307–326 | DOI
[20] Oliferuk W., Korbel A., Bochniak W., “Estimation of energy storage rate during macroscopic non-homogeneous deformation of polycrystalline materials”, Journal of Theoretical and Applied Mechanics (Warsaw), 42:4 (2004), 817–826
[21] Chrysochoos A., Wattrisse B., Muracciole J.-M., El Kaïm Y., “Fields of stored energy associated with localized necking of steel”, Journal of Mechanics of Materials and Structures, 4:2 (2009), 245–262 | DOI
[22] Hodowany J., Ravichandran G., Rosakis A. J., Rosakis P., “Partition of plastic work into heat and stored energy in metals”, Experimental Mechanics, 40:2 (2000), 113–123 | DOI
[23] Aravas N., Kim K.-S., Leckie F. A., “On the calculation of the stored energy of cold work”, J. Eng. Mater. Technol., 112:4 (1990), 465–470
[24] Oliferuk W., Maj M., “Stress-strain curve and stored energy during uniaxial deformation of polycrystals”, European Journal of Mechanics – A/Solids, 28:2 (2009), 266–272 | DOI | Zbl
[25] Benzerga A. A., Bréchet Y., Needleman A., Van der Giessen E., “The stored energy of cold work: Predictions from discrete dislocation plasticity”, Acta Materialia, 53:18 (2005), 4765–4779 | DOI
[26] Stainier L., Ortiz M., “Study and validation of a variational theory of thermo-mechanical coupling in finite visco-plasticity”, Int. J. Solids Structures, 47:5 (2010), 705–715 | DOI | Zbl
[27] Rosakis P., Rosakis A. J., Ravichandran G., Hodowany J., “A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals”, Journal of the Mechanics and Physics of Solids, 48:3 (2000), 581–607 | DOI | MR | Zbl
[28] Xiao Y., Chen J., Cao J., “A generalized thermodynamic approach for modeling nonlinear hardening behaviors”, International Journal of Plasticity, 38 (2012), 102–122 | DOI
[29] Dumoulin S., Louche H., Hopperstad O. S., Børvik T., “Heat sources, energy storage and dissipation in high-strength steels: Experiments and modelling”, European Journal of Mechanics – A/Solids, 29:3 (2010), 461–474 | DOI
[30] Fedorov V. V., Termodinamicheskie aspekty prochnosti i razrusheniia tverdykh tel [Thermodynamic aspects of strength and fracture of solids], FAN, Tashkent, 1979, 168 pp. (In Russian)
[31] Ivanova V. S., Terent'ev V. F., Priroda ustalosti metallov [Nature of metal fatigue], Metallurgiia, Moscow, 1975, 456 pp. (In Russian)
[32] Arutiunian A. R., Arutiunian R. A., “Fatigue fracture criterion based on the latent energy investigations”, Vestnik Sankt-Peterburgskogo universiteta. Seriia 1. Matematika. Mekhanika. Astronomiia, 2010, no. 3, 80–88 (In Russian)
[33] Arutyunyan A., Arutyunyan R., “The Fatigue Fracture Criterion Based on the Latent Energy Approach”, Engineering, 2:5 (2010), 318–321 | DOI
[34] Wan V. V., MacLachlan D. W., Dunne F. P., “A stored energy criterion for fatigue crack nucleation in polycrystals”, Int. J. Fatigue, 68 (2014), 90–102 | DOI
[35] Crété J. P., Longère P., Cadou J. M., “Numerical modelling of crack propagation in ductile materials combining the GTN model and X-FEM”, Computer Methods in Applied Mechanics and Engineering, 275 (2014), 204–233 | DOI | MR | Zbl
[36] Naimark O. B., “Collective properties of defect ensembles and some nonlinear problems of plasticity and fracture”, Phys. Mesomech., 6:4 (2003), 39–63
[37] Plekhov O. A., Naimark O. B., “Theoretical and experimental study of energy dissipation in the course of strain localization in iron”, J. Appl. Mech. Tech. Phys., 50:1 (2009), 127–136 | DOI
[38] Betekhtin V. I., Naimark O. B., Kadomtsev A. G., Grishaev S. N., Experimental and theoretical investigation of defect structure evolution, plastic deformation and fracture, ICMM UB RAS Preprint, Perm, 1997, 56 pp. (In Russian)
[39] Glansdorff P., Prigogine I., Thermodynamic Theory of Structure, Stability and Fluctuations, Wiley-Interscience, New York, 1971, xxvi+305 pp. | Zbl
[40] Plekhov O. A., Naimark O. B., “Statistical model of submicrocrack evolution under cyclic loading”, Proc. of the 13th International Conference on Fracture 2013 (ICF 2013) (June 16–21, 2013, Beijing, China), 2013, 1890–1899 Retrieved (November 10, 2016) http://www.gruppofrattura.it/ocs/index.php/ICF/icf13/paper/viewFile/11232/10611
[41] Murakam S., Continuum Damage Mechanics. A Continuum Mechanics Approach to the Analysis of Damage and Fracture, Springer, Dordrecht, 2012., xxx+402 pp pp. | DOI
[42] Kostina A. A., Plekhov O. A., “Mathematical modeling of the metals destruction using a criterion based on the amount of accumulated energy”, XI All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics. Book of Abstracts (Kazan, August 20–24, 2015), Kazan, 2015, 2017–2019 (In Russian)
[43] Kostina A. A., Plekhov O. A., “Modeling of the energy balance in deformation and failure processes of AISI 304 steel under quasistatic loading”, Matem. Mod., 27:8 (2015), 85–95 (In Russian) | MR | Zbl
[44] Rabold F., Kuna M., “Automated finite element simulation of fatigue crack growth in three-dimensional structures with the software system ProCrack”, Procedia Materials Science, 3 (2014), 1099–1104 | DOI