The quasi-one-dimensional hyperbolic model of~hydraulic fracturing
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 4, pp. 739-754.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes a quasi-one-dimensional hyperbolic model of hydraulic fracture growth assuming for the hydraulic fracturing that stress intensity is much higher than fracture resistance. The mode under analysis, which accounts for convective and unsteady terms in the fluid flow equation, is a generalization of the Perkins–Kern–Nordgren local model. It has been proved that the obtained system of differential equations is a quasi-linear strictly hyperbolic system, for which the characteristics were found as well as their correlations. For the case of the Coriolis correction neglect, the Riemann invariants were found. Neglecting the injected fluid leak-off and viscosity, the Riemann waves, similar to simple plane waves in gas dynamics, were defined and their properties were studied. The evolutionism of fracture boundaries was investigated. The initial boundary value problem was set for fracture growth. It has been shown that the neglect of dissipative terms in the presented model allows constructing a simple wave theory analogous to the theory of one-dimensional gas dynamics for isentropic plane waves.
Keywords: hydraulic fracturing, characteristics
Mots-clés : Riemann invariants, fracture evolution.
@article{VSGTU_2016_20_4_a11,
     author = {A. M. Il'yasov and G. T. Bulgakova},
     title = {The quasi-one-dimensional hyperbolic model of~hydraulic fracturing},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {739--754},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a11/}
}
TY  - JOUR
AU  - A. M. Il'yasov
AU  - G. T. Bulgakova
TI  - The quasi-one-dimensional hyperbolic model of~hydraulic fracturing
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 739
EP  - 754
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a11/
LA  - ru
ID  - VSGTU_2016_20_4_a11
ER  - 
%0 Journal Article
%A A. M. Il'yasov
%A G. T. Bulgakova
%T The quasi-one-dimensional hyperbolic model of~hydraulic fracturing
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 739-754
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a11/
%G ru
%F VSGTU_2016_20_4_a11
A. M. Il'yasov; G. T. Bulgakova. The quasi-one-dimensional hyperbolic model of~hydraulic fracturing. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 4, pp. 739-754. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a11/

[1] Zheltov Yu. P., Khristianovich S. A., “On Hydraulic Fracturing of Oil Reservoirs”, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 1955, no. 5, 3–41 (In Russian)

[2] Muskhelishvili N. I., Some Basic Problems of the Mathematical Theory of Elasticity, Springer, Netherlands, 1977, xxxi+732 pp. | DOI | MR

[3] Perkins T. K., Kern. L. R., “Widths of Hydraulic Fractures”, J. Petroleum Technol., 13:9 (1961), 937–949 | DOI

[4] Nordgren R. P., “Propogation of a vertical hydraulic fracture”, Society of Petroleum Engineers Journal, 12:4 (1972), 306–314 | DOI

[5] Ivashnev O. E., Smirnov N. N., “Formation of a Hydraulic Fracture in a Porous Medium”, Vestn. MGU. Matematika, Mekhanika, 2003, no. 6, 28–37 (In Russian)

[6] Basniev K. S., Kochina I. N., Maksimov V. M., Podzemnaia gidromekhanika [Underground fluid mechanics], Nedra, Moscow, 1993, 416 pp. (In Russian)

[7] Gordeyev Yu. N., Zazovsky A. F., “Self-similar solution for deep-penetrating hydraulic fracture propagation”, Transp. Porous. Med., 7:3 (1992), 283–304 | DOI

[8] Smirnov N. N., Tagirova V. P., “Self-similar solutions of the problem of formation of a hydraulic fracture in a porous medium”, Fluid Dynamics, 42:1 (2007), 60–70 | DOI | MR | Zbl

[9] Teodorovich E. V., Trofimov A. A., Shumilin I. D., “Shape of a plane hydraulic fracture crack in an elastic impermeable medium at various injection rates”, Fluid Dynamics, 46:4 (2011), 603–612 | DOI | MR | Zbl

[10] Garagash D. I., Detournay E., “Plane-strain propagation of a hydraulic fracture: small toughness solution”, J. Appl. Mech., 72:6 (2005), 916–928 | DOI | Zbl

[11] Garagash D. I., “Plane strain propagation of a hydraulic fracture during injection and shut-in: large toughness solutions”, Engng. Fract. Mech., 73:4 (2006), 456–481 | DOI

[12] Adachi J. I., Detournay E., “Plane-strain propagation of a hydraulic fracture in a permeable rock”, Engng. Fract. Mech., 75:16 (2008), 4666–4694 | DOI

[13] Mitchell S. L., Kuske R., Peirce A. P., “An asymptotic framework for finite hydraulic fractures including leak-off”, SIAM J. Appl. Math., 67:2 (2007), 346–386 | DOI

[14] Loitsiansky L. G., Mekhanika zhidkosti i gaza [Mechanics of liquid and gas], Nauka, Moscow, 1987, 840 pp. (In Russian)

[15] Sneddon I. N., Berry D. S., “The classical theory of elasticity”, Elasticity and Plasticity, Encyclopedia of Physics, 6, ed. S. Flügge, Springer-Verlag, Berlin, 1958, 1–126 | DOI | MR

[16] Charnyi I. A., Neustanovivsheesia dvizhenie real'noi zhidkosti v trubakh [Unsteady motion of a real fluid in pipes], Nedra, Moscow, 1975, 296 pp. (In Russian)

[17] Idelchik I. E., Handbook of Hydraulic Resistance, Israel Program for Scientific Translations, Jerusalem, 1966, viii+517 pp.

[18] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Mathematical aspects of numerical solution of hyperbolic systems, Monographs and Surveys in Pure and Applied Mathematics, 118, Chapman Hall/CRC, Boca Raton, FL, 2001, xiii+540 pp. | MR | MR | Zbl | Zbl

[19] Rozhdestvenskij B. L., Yanenko N. N., Systems of quasilinear equations and their applications to gas dynamics, Translations of Mathematical Monographs, 55, AMS, Providence, R.I., 1983, xx+676 pp. | MR | MR | Zbl

[20] Ovsyannikov L. V., Lektsii po osnovam gazovoi dinamiki [Lectures on the Fundamentals of Gas Dynamics], Institute of computer investigations, Moscow, Izhevsk, 2003, 336 pp. (In Russian)

[21] Chernyi G. G., Gazovaia dinamika [Gas Dynamics], Nauka, Moscow, 1988, 424 pp. (In Russian)

[22] Pedley T. J., The Fluid Mechanics of Large Blood Vessels, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge, 1980., xv+446 pp. | DOI | Zbl

[23] Zverev I. N., Smirnov N. N., Gazodinamika goreniia [Gas dynamics of combustion], Moscow State University, Moscow, 1987, 307 pp. (In Russian)