Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_3_a10, author = {S. S. Vlasova and E. Yu. Prosviryakov}, title = {Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {567--577}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a10/} }
TY - JOUR AU - S. S. Vlasova AU - E. Yu. Prosviryakov TI - Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 567 EP - 577 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a10/ LA - en ID - VSGTU_2016_20_3_a10 ER -
%0 Journal Article %A S. S. Vlasova %A E. Yu. Prosviryakov %T Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 567-577 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a10/ %G en %F VSGTU_2016_20_3_a10
S. S. Vlasova; E. Yu. Prosviryakov. Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 3, pp. 567-577. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a10/
[1] Getling A. V., “Formation of spatial structures in Rayleigh—Bénard convection”, Sov. Phys. Usp., 34:9 (1991), 737–776 | DOI
[2] Aristov S. N., Prosviryakov E. Yu., “On one class of analytic solutions of the stationary axisymmetric convection Bénard–Maragoni viscous incompreeible fluid”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz. Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 3(32), 110–118 (In Russian) | DOI | Zbl
[3] Birikh R. V., “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 7:3 (1966), 43–44 | DOI
[4] Andreev V. K., Bekezhanova V. B., “Stability of non-isothermal fluids (Review)”, J. Appl. Mech. Tech. Phys., 54:2 (2013), 171–184 | DOI | MR | Zbl
[5] Aristov S. N., Shvarts K. G., Vikhrevye techeniya advektivnoi prirody vo vrashchayushchemsya sloe zhidkosti [Advective Eddy Flows in a Rotating Liquid Layer], Perm. Gos. Univ., Perm, 2006 (In Russian)
[6] Aristov S. N., Shvarts K. G., Vikhrevye Techeniya v tonkikh sloyakh zhidkosti [Eddy Flows in Thin Liquid Layers], Vyat. Gos. Univ, Kirov, 2011 (In Russian)
[7] Aristov S. N., Shvarts K. G., “Convective heat transfer in a locally heated plane incompressible fluid layer”, Fluid Dynamics, 48:3 (2013), 330–335 | DOI | MR | Zbl
[8] Goncharova O. N., Rezanova E. V., “Modeling of two-layer fluid flows with evaporation at the interface in the presence of the anomalous thermocapillary effect”, J. Sib. Fed. Univ. Math. Phys., 9:1 (2016), 48–59 | DOI
[9] Efimova M. V., “On one two-dimensional stationary flow of a binary mixture and viscous fluid in a plane layer”, J. Sib. Fed. Univ. Math. Phys., 9:1 (2016), 30–36 | DOI
[10] Goncharova O. N., Kabov O. A., Pukhnachov V. V., “Solutions of special type describing the three dimensional thermocapillary flows with an interface”, Int. J. Heat Mass Transfer., 55:4 (2012), 715–725 | DOI | Zbl
[11] Aristov S. N., Prosviryakov E. Yu., “A New Class of Exact Solutions for Three Dimensional Thermal Diffusion Equations”, Theor. Found. Chem. Eng., 50:3 (2016), 286–293 | DOI
[12] Gershuni G. Z., Zhukhovitskii E. M., Konvektivnaya Ustoichivost’ Neszhimaemoi Zhidkosti [Convective Stability of An Incompressible Fluid], Nauka, Moscow, 1972 (In Russian)