Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 3, pp. 567-577.

Voir la notice de l'article provenant de la source Math-Net.Ru

The exact stationary solution of the boundary-value problem that describes the convective motion of an incompressible viscous fluid in the two-dimensional layer with the square heating of a free surface in Stokes's approach is found. The linearization of the Oberbeck–Boussinesq equations allows one to describe the flow of fluid in extreme points of pressure and temperature. The condition under which the counter-current flows (two counter flows) in the fluid can be observed, is introduced. If the stagnant point in the fluid exists, six non-closed whirlwinds can be observed.
Keywords: Newton–Rikhmann law, thermal convection, Oberbeck–Boussinesq equations, counter-current flow.
Mots-clés : exact solution
@article{VSGTU_2016_20_3_a10,
     author = {S. S. Vlasova and E. Yu. Prosviryakov},
     title = {Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {567--577},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a10/}
}
TY  - JOUR
AU  - S. S. Vlasova
AU  - E. Yu. Prosviryakov
TI  - Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 567
EP  - 577
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a10/
LA  - en
ID  - VSGTU_2016_20_3_a10
ER  - 
%0 Journal Article
%A S. S. Vlasova
%A E. Yu. Prosviryakov
%T Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 567-577
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a10/
%G en
%F VSGTU_2016_20_3_a10
S. S. Vlasova; E. Yu. Prosviryakov. Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 3, pp. 567-577. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a10/

[1] Getling A. V., “Formation of spatial structures in Rayleigh—Bénard convection”, Sov. Phys. Usp., 34:9 (1991), 737–776 | DOI

[2] Aristov S. N., Prosviryakov E. Yu., “On one class of analytic solutions of the stationary axisymmetric convection Bénard–Maragoni viscous incompreeible fluid”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz. Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 3(32), 110–118 (In Russian) | DOI | Zbl

[3] Birikh R. V., “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 7:3 (1966), 43–44 | DOI

[4] Andreev V. K., Bekezhanova V. B., “Stability of non-isothermal fluids (Review)”, J. Appl. Mech. Tech. Phys., 54:2 (2013), 171–184 | DOI | MR | Zbl

[5] Aristov S. N., Shvarts K. G., Vikhrevye techeniya advektivnoi prirody vo vrashchayushchemsya sloe zhidkosti [Advective Eddy Flows in a Rotating Liquid Layer], Perm. Gos. Univ., Perm, 2006 (In Russian)

[6] Aristov S. N., Shvarts K. G., Vikhrevye Techeniya v tonkikh sloyakh zhidkosti [Eddy Flows in Thin Liquid Layers], Vyat. Gos. Univ, Kirov, 2011 (In Russian)

[7] Aristov S. N., Shvarts K. G., “Convective heat transfer in a locally heated plane incompressible fluid layer”, Fluid Dynamics, 48:3 (2013), 330–335 | DOI | MR | Zbl

[8] Goncharova O. N., Rezanova E. V., “Modeling of two-layer fluid flows with evaporation at the interface in the presence of the anomalous thermocapillary effect”, J. Sib. Fed. Univ. Math. Phys., 9:1 (2016), 48–59 | DOI

[9] Efimova M. V., “On one two-dimensional stationary flow of a binary mixture and viscous fluid in a plane layer”, J. Sib. Fed. Univ. Math. Phys., 9:1 (2016), 30–36 | DOI

[10] Goncharova O. N., Kabov O. A., Pukhnachov V. V., “Solutions of special type describing the three dimensional thermocapillary flows with an interface”, Int. J. Heat Mass Transfer., 55:4 (2012), 715–725 | DOI | Zbl

[11] Aristov S. N., Prosviryakov E. Yu., “A New Class of Exact Solutions for Three Dimensional Thermal Diffusion Equations”, Theor. Found. Chem. Eng., 50:3 (2016), 286–293 | DOI

[12] Gershuni G. Z., Zhukhovitskii E. M., Konvektivnaya Ustoichivost’ Neszhimaemoi Zhidkosti [Convective Stability of An Incompressible Fluid], Nauka, Moscow, 1972 (In Russian)