Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_3_a1, author = {V. G. Nikolaev}, title = {On decisions of {Schwartz'} problem for $J$-analytic functions with the same {Jordan} basis of real and imaginary parts of $J$-matrix}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {410--422}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a1/} }
TY - JOUR AU - V. G. Nikolaev TI - On decisions of Schwartz' problem for $J$-analytic functions with the same Jordan basis of real and imaginary parts of $J$-matrix JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 410 EP - 422 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a1/ LA - ru ID - VSGTU_2016_20_3_a1 ER -
%0 Journal Article %A V. G. Nikolaev %T On decisions of Schwartz' problem for $J$-analytic functions with the same Jordan basis of real and imaginary parts of $J$-matrix %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 410-422 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a1/ %G ru %F VSGTU_2016_20_3_a1
V. G. Nikolaev. On decisions of Schwartz' problem for $J$-analytic functions with the same Jordan basis of real and imaginary parts of $J$-matrix. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 3, pp. 410-422. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a1/
[1] Soldatov A. P., “The Schwarz problem for Douglis analytic functions”, J. Math. Sci., 173:2 (2011), 221–224 | DOI | MR | Zbl
[2] Nikolaev V. G., Soldatov A. P., “On the solution of the Schwarz problem for $J$-analytic functions in a domain bounded by a Lyapunov contour”, Differ. Equ., 51:7 (2015), 962–966 | DOI | MR | Zbl
[3] Soldatov A. P., “Integral representation of Douglis analytic functions”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2008, no. 8/1(67), 225–234 (In Russian) | MR
[4] Soldatov A. P., “Hyperanalytic functions and their applications”, Sovr. Mat. Pril., 15 (2004), 142–199 (In Russian) | MR
[5] Soldatov A. P., “The Hardy space of solutions to first-order elliptic systems”, Doklady Mathematics, 76:2 (2007), 660–664 | DOI | MR | Zbl
[6] Soldatov A. P., “High-order elliptic systems”, Differ. Equ., 25:1 (1989), 109–115 | MR | Zbl
[7] Bitsadze A. V., “On the uniqueness of the solution of the Dirichlet problem for elliptic partial differential equations”, Uspekhi Mat. Nauk, 3:6(28) (1948), 211–212 (In Russian) | MR | Zbl
[8] Bizadse A. W., Grundlagen der Theorie analytischer Funktionen, I. Abteilung, Band 23, Mathematische Lehrbücher und Monographien, Akademie-Verlag, Berlin, 1973, 186 pp. (In German) | MR | MR | Zbl | Zbl
[9] Bitsadze A. V., Boundary value problems for second order elliptic equations, North-Holland Series in Applied Mathematics and Mechanics, 5, North-Holland Publ. Company, Amsterdam, 1968, 211 pp. | MR | Zbl | Zbl
[10] Boyarskii B. V., “The theory of generalized analytic vector”, Annales Polonici Mathematici, 17:3 (1965), 281–320 (In Russian) https://eudml.org/doc/265098
[11] Vekua I. N., Generalized analytic functions, International Series of Monographs on Pure and Applied Mathematics, 25, Pergamon Press, Oxford, 1962, xxvi+668 pp. | MR | MR | Zbl | Zbl
[12] Zhura N. A., “Bitsadze-Samarskij type boundary-value problems for Douglis-Nirenberg elliptical systems”, Differ. Equ., 28:1 (1992), 79–88 | MR | Zbl
[13] Zhura N. A., “A general boundary value problem for systems elliptic in the Douglis- Nirenberg sense in domains with smooth boundary”, Russ. Acad. Sci., Izv., Math., 44:1 (1995), 21–42 | DOI | MR | Zbl
[14] Muskhelishvili N. I., Singular integral equations, Wolters-Noordhoff Publ., Groningen, 1967, 447 pp. | MR | Zbl | Zbl
[15] Nikolaev V. G., “On some properties of $J$-analytical functions”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2013, no. 3(104), 25–32 (In Russian) | Zbl
[16] Nikolaev V. G., Panov E. Yu., “On coincidence of $\lambda$- and $\mu$-holomorphic functions on the boundary of a domain and applications to elliptic boundary value problems”, Problemy matematicheskogo analiza [Problems of mathematical analysis], Issue 74, eds. N. N. Ural'tseva, Tamara Rozhkovskaia, Novosibirsk, 2013, 123–132 (In Russian)