An internal boundary value problem with~the Riemann--Liouville operator for the mixed type equation of the third order
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 1, pp. 43-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

The unique solvability of the internal boundary value problem is investigated for the mixed type equation of the third order with Riemann–Liouville operators in boundary condition. The uniqueness theorem is proved for the different orders of operators of fractional integro-differentiation when the inequality constraints on the known functions exist. The existence of solution is verified by the method of reduction to Fredholm equations of the second kind, which unconditional solvability follows from the uniqueness of the solution of the problem.
Keywords: mixed type equation, Fredholm equation, Cauchy problem, fractional operators in the sense of Riemann–Liouville integro-differentiation.
@article{VSGTU_2016_20_1_a3,
     author = {O. A. Repin and S. K. Kumykova},
     title = {An internal boundary value problem with~the {Riemann--Liouville} operator for the mixed type equation of the third order},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {43--53},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a3/}
}
TY  - JOUR
AU  - O. A. Repin
AU  - S. K. Kumykova
TI  - An internal boundary value problem with~the Riemann--Liouville operator for the mixed type equation of the third order
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 43
EP  - 53
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a3/
LA  - ru
ID  - VSGTU_2016_20_1_a3
ER  - 
%0 Journal Article
%A O. A. Repin
%A S. K. Kumykova
%T An internal boundary value problem with~the Riemann--Liouville operator for the mixed type equation of the third order
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 43-53
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a3/
%G ru
%F VSGTU_2016_20_1_a3
O. A. Repin; S. K. Kumykova. An internal boundary value problem with~the Riemann--Liouville operator for the mixed type equation of the third order. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 1, pp. 43-53. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a3/

[1] Samko St. G., Kilbas A. A., Marichev O. I., Fractional integrals and derivatives: theory and applications, Gordon and Breach, New York, NY, 1993, xxxvi+976 pp. | MR | MR | Zbl

[2] Nakhushev A. M., Drobnoe ischislenie i ego primenenie [Fractional calculus and its applications], Moscow, Fizmatlit, 2003, 272 pp. (In Russian)

[3] Nakhushev A. M., Zadachi so smeshcheniem dlia uravnenii v chastnykh proizvodnykh [Problems with shifts for partial differential equations], Nauka, Moscow, 2006, 287 pp. (In Russian)

[4] Repin O. A., Kumykova S. K., “A nonlocal problem for a mixed-type equation whose order degenerates along the line of change of type”, Russian Math. (Iz. VUZ), 57:8 (2013), 49–56 | DOI | MR | Zbl

[5] Repin O. A., Kumykova S. K., “On a nonlocal problem for a third-order equation of mixed type with multiple characteristics”, Differ. Equ., 51:6 (2015), 767–775 | DOI | DOI | MR | Zbl | Zbl

[6] Repin O. A., Kumykova S. K., “Problem with shift for the third-order equation with discontinuous coefficients”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, no. 4(29), 17–25 (In Russian) | DOI | MR

[7] Bitsadze A. V., Some classes of partial differential equations, Advanced Studies in Contemporary Mathematics, 4, Gordon Breach Science Publ., New York, 1988, xi+504 pp. | MR | MR | Zbl | Zbl

[8] Kumykova S. K., “A problem for an equation of mixed type with nonlocal boundary conditions on characteristics”, Differ. Equ., 10:1 (1974), 55–62 | MR | Zbl | Zbl