Fundamental solution of the model equation of anomalous diffusion of fractional order
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 4, pp. 722-735.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fundamental solution of the model equation of anomalous diffusion with Riemann–Liouville operator is constructed. Using the properties of the integral transformation with Wright function in kernel, we give estimates for the fundamental solution. When the considered equation transformes into the diffusion equation of fractional order, constructed fundamental solution goes into the corresponding fundamental solution of the diffusion equation of fractional order. General solution of the model equation of anomalous diffusion of fractional order is constructed.
Mots-clés : anomalous diffusion, diffusion fractional order
Keywords: Riemann–Liouville operator, fundamental solution, general representation of solution, modified Bessel function, Wright function, integral transformation wich Wright function in kernel.
@article{VSGTU_2015_19_4_a10,
     author = {F. G. Khushtova},
     title = {Fundamental solution of the model equation of anomalous diffusion of fractional order},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {722--735},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a10/}
}
TY  - JOUR
AU  - F. G. Khushtova
TI  - Fundamental solution of the model equation of anomalous diffusion of fractional order
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2015
SP  - 722
EP  - 735
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a10/
LA  - ru
ID  - VSGTU_2015_19_4_a10
ER  - 
%0 Journal Article
%A F. G. Khushtova
%T Fundamental solution of the model equation of anomalous diffusion of fractional order
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2015
%P 722-735
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a10/
%G ru
%F VSGTU_2015_19_4_a10
F. G. Khushtova. Fundamental solution of the model equation of anomalous diffusion of fractional order. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 4, pp. 722-735. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a10/

[1] Nakhushev A. M., Uravneniia matematicheskoi biologii [Equations of mathematical biology], Vysshaia shkola, Moscow, 1995, 301 pp. (In Russian) | Zbl

[2] Pskhu A. B., Uravneniia v chastnykh proizvodnykh drobnogo poriadka [Partial differential equations of fractional order], Nauka, Moscow, 2005, 199 pp. (In Russian) | MR | Zbl

[3] Tersenov S. A., Parabolicheskie uravneniia s meniaiushchimsia napravleniem vremeni [Parabolic equations with varying time direction], Nauka, Moscow, 1985, 105 pp. (In Russian) | MR | Zbl

[4] Pagani C., “On the parabolic equation $\text{sgn}(x)|x|^{p}u_y-u_{xx}=0$ and a related one”, Annali di Matematica Pura ed Applicata, Series 4, 99:1 (1974), 333–339 | DOI | MR

[5] Kȩpiński M. S., “Integration der Differentialgleichung $\frac{\partial^2 j }{\partial \xi^2}-\frac{1}{\xi} \frac{\partial j }{\partial t}=0$”, Krakau Anz., 1905, 198–205 | Zbl

[6] Arena O., “On a degenerate elliptic-parabolic equation”, Communications in Partial Differential Equations, 11:3 (1978), 1007–1040 | DOI | MR

[7] Mainardi F., “The time fractional diffusion-wave equation”, Radiophysics and Quantum Electronics, 38:1–2 (1995), 13–24 | DOI | MR

[8] Mainardi F., “The fundamental solutions for the fractional diffusion-wave equation”, Applied Mathematics Letters, 9:6 (1996), 23–28 | DOI | MR | Zbl

[9] Pskhu A. V., “The fundamental solution of a diffusion-wave equation of fractional order”, Izv. Math., 73:2 (2009), 351–392 | DOI | DOI | MR | Zbl

[10] Voroshilov A. A., Kilbas A. A., “A Cauchy-type problem for the diffusion-wave equation with Riemann-Liouville partial derivative”, Dokl. Math., 73:1 (2006), 6–10 | DOI | MR | Zbl

[11] Gekkieva S. H., “The Cauchy problem for the generalized transmission equation with a fractional derivative with respect to the time”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 5:1 (2000), 16–19 (In Russian)

[12] Kochubej A. N., “A Cauchy problem for evolution equations of fractional order”, Differ. Equations, 25:8 (1989), 967–974 | MR | Zbl

[13] Kochubei A. N., “Fractional-order diffusion”, Differ. Equations, 26:4 (1990), 485–492 | MR | Zbl | Zbl

[14] Metzler R., Glöckle W. G., Nonnenmacher T. F., “Fractional model equation for anomalous diffusion”, Physica A: Statistical Mechanics and its Applications, 211:1 (1994), 13–24 | DOI

[15] Giona M., Roman H. E., “Fractional diffusion equation on fractals: one-dimensional case and asymptotic behavior”, Phys. A: Math. Gen., 25:8 (1992), 2093–2105 | DOI | MR | Zbl

[16] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Physics Reports, 339:1 (2000), 1–77 | DOI | MR | Zbl

[17] Metzler R., Klafter J., “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics”, Phys. A: Math. Gen., 37:31 (2004), R161–R208 | DOI | MR | Zbl

[18] Uchaikin V. V., “Cosmic ray anisotropy in fractional differential models of anomalous diffusion”, JETP, 116:6 (2013), 897–903 | DOI | DOI

[19] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers, Nonlinear Physical Science, I, Background and Theory, Springer, Berlin, 2013. xii+385 pp | DOI | MR | Zbl

[20] Kuznetsov D. S., Spetsial'nye funktsii [Special functions], Vysshaia shkola, Moscow, 1962, 248 pp. (In Russian) | Zbl

[21] Erdĺyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II., Bateman Manuscript Project, McGraw-Hill Book Co., New York, Toronto, London, 1953, xvii+396 pp. | Zbl

[22] Wright E. M., “On the coefficients of power series having exponential singularities”, J. London Math. Soc., s1–8:1 (1933), 71–79 | DOI | MR | Zbl

[23] Gorenflo R., Luchko Y., Mainardi F., “Analytical properties and applications of the Wright function”, Fractional Calculus and Applied Analysis, 2:4 (1999), 383–414, arXiv: math-ph/0701069 | MR | Zbl