Hyperfine structure of $S$-states of muonic deuterium
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 3, pp. 474-488.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of quasipotential method in quantum electrodynamics we calculate corrections of order $\alpha^5$ and $\alpha^6$ to hyperfine structure of $S$-wave energy levels of muonic deuterium. Relativistic corrections, effects of vacuum polarization in first, second and third orders of perturbation theory, nuclear structure and recoil corrections are taken into account. The obtained numerical values of hyperfine splitting $\Delta E^{hfs}(1S)=50.2814$ meV ($1S$ state) and $\Delta E^{hfs}(2S)=6.2804$ meV ($2S$ state) represent reliable estimate for a comparison with forthcoming experimental data of CREMA collaboration. The hyperfine structure interval $\Delta_{12}=8\Delta E^{hfs}(2S)- \Delta E^{hfs}(1S)=-0.0379$ meV can be used for precision check of quantum electrodynamics prediction for muonic deuterium.
Keywords: quantum electrodynamics, hyperfine splitting, quasipotential method.
@article{VSGTU_2015_19_3_a5,
     author = {A. P. Martynenko and G. A. Martynenko and V. V. Sorokin and R. N. Faustov},
     title = {Hyperfine structure of $S$-states of muonic deuterium},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {474--488},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a5/}
}
TY  - JOUR
AU  - A. P. Martynenko
AU  - G. A. Martynenko
AU  - V. V. Sorokin
AU  - R. N. Faustov
TI  - Hyperfine structure of $S$-states of muonic deuterium
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2015
SP  - 474
EP  - 488
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a5/
LA  - ru
ID  - VSGTU_2015_19_3_a5
ER  - 
%0 Journal Article
%A A. P. Martynenko
%A G. A. Martynenko
%A V. V. Sorokin
%A R. N. Faustov
%T Hyperfine structure of $S$-states of muonic deuterium
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2015
%P 474-488
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a5/
%G ru
%F VSGTU_2015_19_3_a5
A. P. Martynenko; G. A. Martynenko; V. V. Sorokin; R. N. Faustov. Hyperfine structure of $S$-states of muonic deuterium. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 3, pp. 474-488. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a5/

[1] Martynenko A. P., Martynenko G. A., Sorokin V. V., Faustov R. N., “Hyperfine structure of $S$-states of muonic deuterium”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 238–239 (In Russian)

[2] Pohl R., Antognini A., Nez F. et al., “The size of the proton”, Nature, 466:7303 (2010), 213–216 | DOI

[3] Antognini A., Kottmann F., Biraben F., et al., “Theory of the $2S{-}2P$ Lamb shift and $2S$ hyperfine splitting in muonic hydrogen”, Annals of Physics, 331 (2013), 127–145, arXiv: [physics.atom-ph] 1208.2637 | DOI | Zbl

[4] Borie E., “Lamb shift in light muonic atoms — Revisited”, Annals of Physics, 327:3 (2012), 733–763, arXiv: [physics.atom-ph] 1103.1772 | DOI | Zbl

[5] Pachucki K., “$\alpha(Z\alpha)2EF$ correction to hyperfine splitting in hydrogenic atoms”, Phys. Rev. A, 54:3 (1996), 1994–2016 | DOI

[6] Khriplovich I. B., Milstein A. I., “Corrections to deuterium hyperfine structure due to deuteron excitations”, JETP, 98:2 (2004), 181–185, arXiv: nucl-th/0304069 | DOI

[7] Friar J. L., Martorell J., Sprung D. W. L., “Nuclear sizes and the isotope shift”, Phys. Rev. A, 56:6 (1997), 4579, arXiv: nucl-th/9707016 | DOI

[8] Korzinin E. Yu., Ivanov V. G., Karshenboim S. G., “$\alpha^2(Z\alpha)^4 m$ contributions to the Lamb shift and the fine structure in light muonic atoms”, Phys. Rev. D, 88:12 (2013), 125019, arXiv: [physics.atom-ph] 1311.5784 | DOI

[9] Carlson C. E., Nazaryan V., Griffioen K., “Proton-structure corrections to hyperfine splitting in muonic hydrogen”, Phys. Rev. A, 83:4 (2011), 042509, arXiv: [physics.atom-ph] 1101.3239 | DOI

[10] Jentschura U. D., “Lamb shift in muonic hydrogen—I. Verification and update of theoretical predictions”, Annals of Physics, 326:2 (2011), 500–515, arXiv: [hep-ph] 1011.5275 | DOI | MR | Zbl

[11] Indelicato P., “Nonperturbative evaluation of some QED contributions to the muonic hydrogen $n=2$ Lamb shift and hyperfine structure”, Phys. Rev. A, 87:2 (2013), 022501, arXiv: [physics.atom-ph] 1210.5828 | DOI

[12] Karshenboim S. G., Ivanov V. G., Korzinin E. Yu., Shelyuto V. A., “Nonrelativistic contributions of order $\alpha^5 m_\mu c^2$ to the Lamb shift in muonic hydrogen and deuterium, and in the muonic helium ion”, Phys. Rev. A, 81:6 (2010), 060501 | DOI

[13] Martynenko A. P., “Fine and hyperfine structure of $P$-wave levels in muonic hydrogen”, Phys. Atom. Nuclei, 71:1 (2008), 125–135, arXiv: hep-ph/0610226 | DOI | MR

[14] Krutov A. A., Martynenko A. P., “Hyperfine structure of the ground state muonic $^3\mathrm{He}$ atom”, EPJ. D, 62:2 (2011), 163—175, arXiv: [hep-ph] 1007.1419 | DOI

[15] Eides M. I., Grotch H., Shelyuto V. A., “Theory of light hydrogenlike atoms”, Phys. Rep., 342:2–3 (2001), 63–261, arXiv: hep-ph/0002158 | DOI | Zbl

[16] Miller G. A., Thomas A. W., Carroll J. D., Rafelski J., “Toward a resolution of the proton size puzzle”, Phys. Rev. A, 84:2 (2011), 020101 | DOI

[17] Mohr P. J., Taylor B. N., Newell D. B., “CODATA recommended values of the fundamental physical constants: 2010”, Rev. Mod. Phys., 84:4 (2012), 1527–1605 ; ; | DOI | MR | DOI | DOI

[18] Martynenko A. P., “$2S$ Hyperfine splitting of muonic hydrogen”, Phys. Rev. A, 71:2 (2005), 022506, arXiv: hep-ph/0409107 | DOI

[19] Berestetskiy V. B., Lifshits E. M., Pitaevskiy L. P., Quantum Electrodynamics, Elsevier, Oxford, 1982, xv+652 pp. | DOI

[20] Breit G., “Possible Effects of Nuclear Spin on X-Ray Terms”, Phys. Rev., 35:12 (1930), 1447–1449 | DOI

[21] Martynenko A. P., “Hyperfine structure of the $S$ levels of the muonic helium ion”, JETP, 106:4 (2008), 690–699, arXiv: [hep-ph] 0710.3237 | DOI | MR

[22] Hameka H. F., “On the Use of Green Functions in Atomic and Molecular Calculations. I. The Green Function of the Hydrogen Atom”, J. Chem. Phys., 47:8 (1967), 2728–2735 | DOI

[23] Martynenko A. P., “Lamb shift in the muonic helium ion”, Phys. Rev. A, 76:1 (2007), 012505, arXiv: ; Каршенбойм C. Г., Корзинин Е. Ю., Иванов В. Г., “Поправка”, Письма в ЖЭТФ, 89:4 (2009), 240 hep-ph/0612298 | DOI

[24] Korzinin E. Yu., Ivanov V. G., Karshenboim S. G., “Hyperfine splitting in muonic hydrogen: QED corrections of the $\alpha^2$ order”, JETP Letters, 88:10 (2008), 641–646 ; “Erratum”, JETP Letters, 89:4 (2009), 216 | DOI | DOI

[25] Faustov R. N., Martynenko A. P., “Nuclear structure corrections in the energy spectra of electronic and muonic deuterium”, Phys. Rev. A, 67:5 (2003), 052506, arXiv: hep-ph/0211445 | DOI

[26] Vermaseren J. A. M., New features of FORM, 2000, 14 pp., arXiv: math-ph/0010025

[27] The JLAB t20 collaboration (Abbott D., et al.), “Phenomenology of the deuteron electromagnetic form factors”, EPJ A, 7:3 (2000), 421–427, arXiv: nucl-ex/0002003 | DOI

[28] Faustov R. N., Martynenko A. P., “Hadronic vacuum polarization contribution to the Lamb shift in muonic hydrogen”, EPJ direct, 1:1 (1999), 1–6, arXiv: hep-ph/9906315 | DOI

[29] Faustov R. N., Martynenko A. P., Martynenko G. A., Sorokin V. V., “Radiative nonrecoil nuclear finite size corrections of order $\alpha(Z\alpha)^5$ to the hyperfine splitting of $S$-states in muonic hydrogen”, Phys. Let. B, 733 (2014), 354–358, arXiv: [hep-ph] 1402.5825 | DOI

[30] Martynenko A. P., “Proton-polarizability effect in the Lamb shift for the hydrogen atom”, Phys. Atom. Nuclei, 69:8 (2006), 1309–1316, arXiv: hep-ph/0509236 | DOI

[31] Eides M. I., “Weak-interaction contributions to hyperfine splitting and Lamb shift in light muonic atoms”, Phys. Rev. A, 85:3 (2012), 034503, arXiv: [physics.atom-ph] 1201.2979 | DOI