On frame indifferent Lagrangians of micropolar thermoelastic continuum
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 2, pp. 325-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-linear mathematical model of type-II thermoelastic continuum with fine microstructure is developed. The model is described in terms of 4-covariant field theoretical formalism attributed to field theories of continuum mechanics. Fine microstructure is introduced by $d$-vectors and tensors playing role of extra field variables. A Lagrangian density for type-II thermoelastic continuum with fine microstructure is proposed and the least action principle is formulated. Virtual microstructural inertia is added to the considered action density. It is also valid for the thermal inertia. Corresponding $4$-covariant field equations of type-II thermoelasticity are obtained. Constitutive equations of type-II microstructural thermoelasticity are discussed. Following the usual procedure for type-II micropolar thermoelastic Lagrangians functionally independent rotationally invariant arguments are obtained. Those are proved to form a complete set. Objective forms of the Lagrangians satisfying the frame indifference principle are given. Those are derived by using extrastrain vectors and tensors.
Keywords: thermoelasticity, thermodynamical basis, rotational invariance, frame indifference principle, extrastrain tensor
Mots-clés : microstructure, action, constitutive equation.
@article{VSGTU_2015_19_2_a8,
     author = {V. A. Kovalev and Yu. N. Radayev},
     title = {On frame indifferent {Lagrangians} of micropolar thermoelastic continuum},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {325--340},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a8/}
}
TY  - JOUR
AU  - V. A. Kovalev
AU  - Yu. N. Radayev
TI  - On frame indifferent Lagrangians of micropolar thermoelastic continuum
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2015
SP  - 325
EP  - 340
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a8/
LA  - ru
ID  - VSGTU_2015_19_2_a8
ER  - 
%0 Journal Article
%A V. A. Kovalev
%A Yu. N. Radayev
%T On frame indifferent Lagrangians of micropolar thermoelastic continuum
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2015
%P 325-340
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a8/
%G ru
%F VSGTU_2015_19_2_a8
V. A. Kovalev; Yu. N. Radayev. On frame indifferent Lagrangians of micropolar thermoelastic continuum. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 2, pp. 325-340. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a8/

[1] Kovalev V. A., Radayev Yu. N., “On frame indifferent Lagrangians of micropolar thermoelastic continuum”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 195–196 (In Russian)

[2] Radayev Yu. N., “Hyperbolic theories and problems of solid mechanics”, Sovremennye problemy mekhaniki [Modern Problems of Mechanics], Abstracts of the International Conference, Moscow, 2012, 75–76 (In Russian)

[3] Radayev Yu. N., Kovalev V. A., “Hyperbolic theories and problems of continuum mechanics”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:1 (2015), 186–202 (In Russian) | DOI | Zbl

[4] Toupin R. A., “Theories of elasticity with couple-stress”, Arch. Rational Mech. Anal., 17:2 (1964), 85–112 | DOI | MR | Zbl

[5] Kovalev V. A., Radayev Yu. N., Elementy teorii polia: variatsionnye simmetrii i geometricheskie invarianty [Field Theory Elements: Variational Symmetries and Geometric Invariants], Fizmatlit, Moscow, 2009, 156 pp. (In Russian)

[6] Kovalev V. A., Radayev Yu. N., Volnovye zadachi teorii polia i termomekhanika [Wave problems of the field theory and thermomechanic], Saratov State Univ., Saratov, 2010, 328 pp. (In Russian)

[7] Kovalev V. A., Radaev Yu. N., “Derivation of energy-momentum tensors in theories of micropolar hyperbolic thermoelasticity”, Mechanics of Solids, 46:5 (2011), 705–720 | DOI | MR

[8] Kovalev V. A., Radayev Yu. N., “Covariant field equations and $d$-tensors of hyperbolic thermoelastic continuum with fine microstructure”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:2(1) (2013), 60–68 (In Russian) | Zbl

[9] Radayev Yu. N., Kovalev V. A., “Rotational invariance of non-linear Lagrangians of type-II micropolar thermoelastic continuum”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:4(1) (2013), 96–102 (In Russian) | Zbl

[10] Gurevich G. B., Foundations of the theory of algebraic invariants, P. Noordhoff Ltd., Groningen, Netherlands, 1964, viii+429 pp. | MR | MR | Zbl

[11] Kovalev V. A., Radayev Yu. N., “On Nonlinear Strain Vectors and Tensors in Continuum Theories of Mechanics”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 1(34), 66–85 (In Russian) | DOI | Zbl