Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2015_19_1_a7, author = {D. S. Shirokov}, title = {Contractions on ranks and quaternion types in {Clifford} algebras}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {117--135}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a7/} }
TY - JOUR AU - D. S. Shirokov TI - Contractions on ranks and quaternion types in Clifford algebras JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2015 SP - 117 EP - 135 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a7/ LA - ru ID - VSGTU_2015_19_1_a7 ER -
%0 Journal Article %A D. S. Shirokov %T Contractions on ranks and quaternion types in Clifford algebras %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2015 %P 117-135 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a7/ %G ru %F VSGTU_2015_19_1_a7
D. S. Shirokov. Contractions on ranks and quaternion types in Clifford algebras. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 1, pp. 117-135. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a7/
[1] Clifford W. K., “Application of Grassmann's Extensive Algebra”, American Journal of Mathematics, 1:4 (1878), 350–358 | DOI | MR | Zbl
[2] Hamilton W. R., “II. On quaternions, or on a new system of imaginaries in algebra”, Philosophical Magazine Series 3, 25:163 (1844), 489–495 | DOI
[3] Grassmann H., Die Lineale Ausdehnungslehre ein neuer Zweig der Mathematik, Verlag von Otto Wigand, Leipzig, 1844, xxxii+282 pp. Internet Archive Identifier: ; Grassmann H., Die Lineale Ausdehnungslehre ein neuer Zweig der Mathematik, Cambridge University Press, Cambridge, 2012, xxxii+282 pp. dielinealeausde00grasgoog | DOI
[4] Lipschitz R., Untersuchungen über die Summen von Quadraten, Max Cohen und Sohn, Bonn, 1886, 147 pp.
[5] Chevalley C., Collected works, v. 2, The algebraic theory of spinors and Clifford algebras, eds. Pierre Cartier and Catherine Chevalley, Springer, Berlin, 1997, xiv+ 214 pp. | MR | Zbl
[6] Dirac P. A. M., “The Quantum Theory of the Electron”, Proc. R. Soc. (A), 117:778 (1928), 610–624 ; Dirac P. A. M., “The Quantum Theory of the Electron”, Special Theory of Relativity, The Commonwealth and International Library: Selected Readings in Physics, 1970, 237–256 | DOI | Zbl | DOI
[7] Hestenes D., Sobczyk G., Clifford Algebra to Geometric Calculus. A Unified Language for Mathematics and Physics, Reidel Publishing Company, 1984, 314 pp. | MR
[8] Marchuk N. G., Uravneniia teorii polia i algebry Klifforda [Equations of Field Theory and Clifford Algebras], Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2009, 304 pp. (In Russian)
[9] Dixon J. D., “Computing Irreducible Representations of Groups”, Math. Comp., 24:111 (1970), 707–712 | DOI | MR
[10] Babai L., Friedl K., “Approximate representation theory of finite groups”, Foundations of Computer Science, 1991, 733–742 | DOI | MR
[11] Shirokov D. S., Method of averaging in Clifford algebras, 2015, 15 pp., arXiv: [math-ph] 1412.0246 | MR
[12] Marchuk N. G., Shirokov D. S., New class of gauge invariant solutions of Yang–Mills equations, 2014, 35 pp., arXiv: [math-ph] 1406.6665
[13] Shirokov D. S., Method of generalized contractions and Pauli's theorem in Clifford algebras, 2014, 14 pp., arXiv: [math-ph] 1409.8163
[14] Pauli W., “Contributions mathématiques à la théorie des matrices de Dirac”, Annales de l'institut Henri Poincaré, 6:2 (1936), 109–136 | MR
[15] Shirokov D. S., “Extension of Pauli's theorem to Clifford algebras”, Dokl. Math., 84:2 (2011), 699–701 | DOI | Zbl
[16] Shirokov D. S., “Pauli theorem in the description of n -dimensional spinors in the Clifford algebra formalism”, Theoret. and Math. Phys., 175:1 (2013), 454–474 | DOI | DOI | MR | Zbl
[17] Shirokov D. S., “The use of the generalized Pauli's theorem for odd elements of Clifford algebra to analyze relations between spin and orthogonal groups of arbitrary dimensions”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 1(30), 279–287 (In Russian) | DOI
[18] Marchuk N. G., Shirokov D. S., “Unitary spaces on Clifford algebras”, Adv. Appl. Clifford Algebras, 18:2 (2008), 237–254, arXiv: [math-ph] 0705.1641 | DOI | MR | Zbl
[19] Lounesto P., Clifford Algebras and Spinors, London Mathematical Society Lecture Note Series, 239, Cambridge University Press, Cambridge, 1997, ix+306 pp. ; Lounesto P., Clifford Algebras and Spinors (second edition), London Mathematical Society Lecture Note Series, 286, Cambridge University Press, Cambridge, 2001, ix+338 pp. | MR | Zbl | DOI | MR | Zbl
[20] Shirokov D. S., “Classification of elements of clifford algebras according to quaternionic types”, Doklady Mathematics, 80:1 (2009), 610–612 | DOI | MR | Zbl
[21] Shirokov D. S., “Quaternion typification of Clifford algebra elements”, Adv. Appl. Clifford Algebras, 22:1 (2012), 243-256 | DOI | MR | Zbl
[22] Shirokov D. S., “Development of the method of quaternion typification of clifford algebra elements”, Adv. Appl. Clifford Algebras, 22:2 (2012), 483–497, arXiv: [math-ph] 0903.3494 | DOI | MR | Zbl