On one generalization of Bessel function
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 137 (2014) no. 4, pp. 16-21
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the generalized Bessel function $J_{\mu ,\omega } ( x )$ is introduced. The function $J_{\mu ,\omega } ( x )$ is given as one solution of the following differential equation: $$ x^2{y}''+x{y}'+\left( {x-\mu ^2} \right)\left( {x+\omega ^2} \right)y=0, \quad \mu , \omega \notin \mathbb Z. $$ The representation of the $J_{\mu ,\omega } ( x )$ by the power series is given. The theorem on integral representations of the function $J_{\mu ,\omega } ( x )$ is established. The main properties of the function $J_{\mu ,\omega } ( x )$ are studied. The integral transforms of Bessel type with the function $J_{\mu ,\omega } ( x )$ is constructed. Formula of inversion of this transform is received.
Keywords:
Bessel function, hypergeometric function, integral transform.
@article{VSGTU_2014_137_4_a1,
author = {N. A. Virchenko and M. A. Chetvertak},
title = {On one generalization of {Bessel} function},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {16--21},
year = {2014},
volume = {137},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_137_4_a1/}
}
TY - JOUR AU - N. A. Virchenko AU - M. A. Chetvertak TI - On one generalization of Bessel function JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 16 EP - 21 VL - 137 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_137_4_a1/ LA - ru ID - VSGTU_2014_137_4_a1 ER -
%0 Journal Article %A N. A. Virchenko %A M. A. Chetvertak %T On one generalization of Bessel function %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 16-21 %V 137 %N 4 %U http://geodesic.mathdoc.fr/item/VSGTU_2014_137_4_a1/ %G ru %F VSGTU_2014_137_4_a1
N. A. Virchenko; M. A. Chetvertak. On one generalization of Bessel function. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 137 (2014) no. 4, pp. 16-21. http://geodesic.mathdoc.fr/item/VSGTU_2014_137_4_a1/