On Leibniz–Poisson Special Polynomial Identities
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 135 (2014) no. 2, pp. 9-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study Leibniz–Poisson algebras satisfying polynomial identities. We study Leibniz–Poisson special and Leibniz–Poisson extended special polynomials. We show that the sequence of codimensions $\{r_n({\mathbf V})\}_{n\geq 1}$ of every extended special space of variety ${\mathbf V}$ of Leibniz-Poisson algebras over an arbitrary field is either bounded by a polynomial or at least exponential. Furthermore, if this sequence is bounded by polynomial then there is a polynomial $R(x)$ with rational coefficients such that $r_n({\mathbf V}) = R(n)$ for all sufficiently large n. It follows that there exists no variety of Leibniz-Poisson algebras with intermediate growth of the sequence $\{r_n({\mathbf V})\}_{n\geq 1}$ between polynomial and exponential. We present lower and upper bounds for the polynomials $R(x)$ of an arbitrary fixed degree.
Keywords: Leibniz algebra, variety of algebras.
Mots-clés : Leibniz–Poisson algebra
@article{VSGTU_2014_135_2_a18,
     author = {S. M. Ratseev and O. I. Cherevatenko},
     title = {On {Leibniz{\textendash}Poisson} {Special} {Polynomial} {Identities}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {9--15},
     year = {2014},
     volume = {135},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_135_2_a18/}
}
TY  - JOUR
AU  - S. M. Ratseev
AU  - O. I. Cherevatenko
TI  - On Leibniz–Poisson Special Polynomial Identities
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 9
EP  - 15
VL  - 135
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_135_2_a18/
LA  - ru
ID  - VSGTU_2014_135_2_a18
ER  - 
%0 Journal Article
%A S. M. Ratseev
%A O. I. Cherevatenko
%T On Leibniz–Poisson Special Polynomial Identities
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 9-15
%V 135
%N 2
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_135_2_a18/
%G ru
%F VSGTU_2014_135_2_a18
S. M. Ratseev; O. I. Cherevatenko. On Leibniz–Poisson Special Polynomial Identities. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 135 (2014) no. 2, pp. 9-15. http://geodesic.mathdoc.fr/item/VSGTU_2014_135_2_a18/

[1] S. M. Ratseev, “Commutative Leibniz–Poisson algebras of polynomial growth”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2012, no. 3/1(94), 54–65 (In Russian)

[2] S. M. Ratseev, “On varieties of Leibniz–Poisson algebras with the identity $\{x,y\}\cdot \{z,t\}=0$”, J. Sib. Fed. Univ. Math. Phys., 6:1 (2013), 97–104

[3] S. M. Ratseev, “Necessary and sufficient conditions of polynomial growth of varieties of Leibniz–Poisson algebras”, Russian Math. (Iz. VUZ), 58:3 (2014), 26–30 | DOI | Zbl

[4] S. M. Ratseev, O. I. Cherevatenko, “Exponents of some varieties of Leibniz—Poisson algebras”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2013, no. 3(104), 42–52 (In Russian) | MR | Zbl

[5] S. M. Ratseev, “On exponents of some varieties of linear algebras”, Prikl. Diskr. Mat., 2013, no. 3, 32–34 (In Russian) | MR

[6] S. M. Ratseev, O. I. Cherevatenko, “On some varieties of Leibniz–Poisson algebras with extreme properties”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 2, 57–59 (In Russian)

[7] S. M. Ratseev, O. I. Cherevatenko, “On metabelian varieties of Leibniz–Poisson algebras”, IIGU Ser. Matematika, 6:1 (2013), 72–77 (In Russian) | Zbl

[8] O. I. Cherevatenko, “Varieties of linear algebras of polynomial growth”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 4(33), 7–14 (In Russian) | DOI | Zbl

[9] D. R. Farkas, “Poisson polynomial identities”, Comm. Algebra, 26:2 (1998), 401–416 | DOI | MR | Zbl

[10] D. R. Farkas, “Poisson polynomial identities II”, Arch. Math. (Basel), 72:4 (1999), 252–260 | DOI | MR | Zbl

[11] S. P. Mishchenko, V. M. Petrogradsky, A. Regev, “Poisson PI algebras”, Trans. Amer. Math. Soc., 359:10 (2007), 4669–4694 | DOI | MR | Zbl

[12] S. M. Ratseev, “Poisson algebras of polynomial growth”, Siberian Math. J., 54:3 (2013), 555–565 | DOI | MR | Zbl

[13] S. M. Ratseev, “Growth in Poisson algebras”, Algebra and Logic, 50:1 (2011), 46–61 | DOI | MR | Zbl | Zbl

[14] S. M. Ratseev, “Equivalent conditions of polynomial growth of a variety of Poisson algebras”, Moscow University Mathematics Bulletin, 67:5–6 (2012), 195–199 | DOI | MR | Zbl

[15] S. M. Ratseev, “On varieties of Poisson algebras with extremal properties”, Nauch. vedomosti BelGU. Mat. Fiz., 30:5(148) (2013), 107–110 (In Russian)

[16] S. M. Ratseev, “Estimates of the growth of certain varieties of Poisson algebras”, Nauch. vedomosti BelGU. Mat. Fiz., 31:11 (2013), 93–101 (In Russian)

[17] O. I. Cherevatenko, “On Lie nilpotent Poisson algebras”, Nauch. vedomosti BelGU. Mat. Fiz., 29:23(142) (2013), 14–16 (In Russian)

[18] I. P. Shestakov, U. U. Umirbaev, “The tame and the wild automorphisms of polynomial rings in three variables”, J. Amer. Math. Soc., 17:1 (2004), 197–227 | DOI | MR | Zbl

[19] M. Nagata, On the automorphism group on $k[x,y]$, Department of Mathematics, Kyoto University, Lectures in Mathematics, 5, Kinokuniya Book-Store Co., Tokyo, 1972, v+53 pp. | MR | Zbl

[20] Yu. A. Bakhturin, Tozhdestva v algebrakh Li [Identities in Lie Algebras], Nauka, Moscow, 1985, 448 pp. (In Russian) | MR | Zbl

[21] A. Giambruno, M. V. Zaicev, Polynomial Identities and Asymptotic Methods, Mathematical Surveys and Monographs, 122, American Mathematical Society, Providence R.I., 2005, xiv+352 pp. | DOI | MR | Zbl

[22] V. Drensky, Free algebras and PI-algebras. Graduate course in algebra, Springer-Verlag, Singapore, 2000, xii+271 pp. | MR | Zbl

[23] S. M. Ratseev, “Growth and colength of special type spaces of varieties of Poisson algebras”, Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region, 2006, no. 5(26), 125–135 (In Russian)

[24] V. Drensky, A. Regev, “Exact asymptotic behaviour of the codimention of some P.I. algebras”, Israel J. Math, 96:1 (1996), 231–242 | DOI | MR | Zbl

[25] S. M. Ratseev, O. I. Cherevatenko, “On the nilpotent Leibniz–Poisson algebras”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 4(29), 207–211 (In Russian) | DOI