@article{VSGTU_2014_135_2_a12,
author = {O. P. Soldatova and I. A. Lyozin},
title = {Research of {Classification} {Tasks} {Solving} {Using} {Neural} {Fuzzy} {Production} {Based} {Network} {Models} of {Mamdani{\textendash}Zadeh}},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {136--148},
year = {2014},
volume = {135},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_135_2_a12/}
}
TY - JOUR AU - O. P. Soldatova AU - I. A. Lyozin TI - Research of Classification Tasks Solving Using Neural Fuzzy Production Based Network Models of Mamdani–Zadeh JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2014 SP - 136 EP - 148 VL - 135 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGTU_2014_135_2_a12/ LA - ru ID - VSGTU_2014_135_2_a12 ER -
%0 Journal Article %A O. P. Soldatova %A I. A. Lyozin %T Research of Classification Tasks Solving Using Neural Fuzzy Production Based Network Models of Mamdani–Zadeh %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2014 %P 136-148 %V 135 %N 2 %U http://geodesic.mathdoc.fr/item/VSGTU_2014_135_2_a12/ %G ru %F VSGTU_2014_135_2_a12
O. P. Soldatova; I. A. Lyozin. Research of Classification Tasks Solving Using Neural Fuzzy Production Based Network Models of Mamdani–Zadeh. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 135 (2014) no. 2, pp. 136-148. http://geodesic.mathdoc.fr/item/VSGTU_2014_135_2_a12/
[1] L. X. Wang, J. M. Mendel, “Generating fuzzy rules by learning from examples”, IEEE Trans. Syst., Man, Cybern., 22:6 (1992), 1414–1427 | DOI | MR
[2] Li-Xin Wang, “The WM method completed: a flexible fuzzy system approach to data mining”, IEEE Trans. Fuzzy Systems, 11:6 (2003), 768–782 | DOI
[3] L. A. Zadeh, “Fuzzy logic, neural networks, and soft computing”, Communications of the ACM, 37:3 (1994), 77–84 | DOI | MR
[4] E. H. Mamdani, “Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis”, IEEE Trans. Computers, C-26:12, 1182–1191 | DOI
[5] S. Osovskiy, Neyronnyye seti dlya obrabotki informatsii [Neural networks for information processing], Finansy i statistika, Moscow, 2002, 344 pp. (In Russian)
[6] O. P. Soldatova, “Multifunctional simulator of neural networks”, Programmnyye produkty i sistemy, 2012, no. 3, 27–31 (In Russian)
[7] D. Rutkovskaya, M. Pilin'skiy, L. Rutkovskiy, Neyronnyye seti, geneticheskiye algoritmy i nechotkiye sistemy [Neural networks, genetic algorithms and fuzzy systems], Goryachaya liniya–Telekom, M., 2007, 452 pp. (In Russian)
[8] V. Novák, I. Perfilieva, J. Močkoř, Mathematical Principles of Fuzzy Logic, The Springer International Series in Engineering and Computer Science, 517, Springer, 1999, xiii+320 pp. ; V. Novak, I. Perfileva, I. Mochkorzh, Matematicheskie printsipy nechetkoi logiki, M., Fizmatlit, 2006, 352 pp. | DOI | MR
[9] V. V. Borisov, V. V. Kruglov, A. S. Fedulov, Nechetkiye modeli i seti [Fuzzy models and networks], Goryachaya liniya–Telekom, Moscow, 2007, 284 pp.
[10] A. S. Katasev, “Mathematical and software for fuzzy-productions knowledge bases generation of the expert diagnostic systems”, Fundamental'nyye issledovaniya, 2013, no. 10-9, 1922–1927 (In Russian)
[11] V. V. Bukhtoyarov, “Evolutionary three-stage approach for designing of neural networks ensembles for classification problems”, Programmnyye produkty i sistemy, 2012, no. 4, 101–106 (In Russian)