On the Lowest by $x$-variable Terms Influence on the Spectral Properties of Dirichlet Problem for the Hyperbolic Systems
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 135 (2014) no. 2, pp. 16-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We made the comparison study and characterize the spectral properties of differential operators induced by the Dirichlet problem for the hyperbolic system without the lowest terms of the form $$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2} = \lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2} = \lambda{u^2}+ f^2, $$ and for the hyperbolic system with the lowest terms of the form $$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2}+\cfrac{\partial{u^2}}{\partial{x}} =\lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2}+\cfrac{\partial{u^1}}{\partial{x}} = \lambda{u^2}+ f^2, $$, which are considered in the closure $V_{t,x}$ of the bounded domain $\Omega_{t,x}=(0;\pi)^2$ in Euclidean space $\mathbb{R}^2_{t,x}.$ The spectral properties of the boundary value problems for the systems of linear differential equations of the hyperbolic type are investigated in the Hilbert space $\mathcal{H}_{t,x}$ in the terms of spectral closed operators $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x}$. We study the spectra of the closed differential operators $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x},$ induced by the Dirichlet problem for the second order hyperbolic systems: $C\sigma{L}=R\sigma{L}$ — empty set; point spectrum $P\sigma{L}$ is in the real straight line of the complex plane $\mathbb{C}$. The operator $L$ eigen vector functions generate the orthogonal basis for the hyperbolic system without the lowest terms. For the hyperbolic system with the lowest terms the operator $L$ eigen vector functions generate the Riesz basis, nonorthogonal in the Hilbert space $\mathcal{H}_{t,x}.$ The theorems on the structure of the induced by the Dirichlet problem operator $L$ spectrum $\sigma L$ are formulated.
Keywords: hyperbolic systems, boundary value problems, closed operators, spectrum, basis, orthogonal basis, Riesz basis.
@article{VSGTU_2014_135_2_a0,
     author = {O. V. Alexeeva and V. V. Kornienko and D. V. Kornienko},
     title = {On the {Lowest} by $x$-variable {Terms} {Influence} on the {Spectral} {Properties} of {Dirichlet} {Problem} for the {Hyperbolic} {Systems}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {16--21},
     year = {2014},
     volume = {135},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2014_135_2_a0/}
}
TY  - JOUR
AU  - O. V. Alexeeva
AU  - V. V. Kornienko
AU  - D. V. Kornienko
TI  - On the Lowest by $x$-variable Terms Influence on the Spectral Properties of Dirichlet Problem for the Hyperbolic Systems
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2014
SP  - 16
EP  - 21
VL  - 135
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2014_135_2_a0/
LA  - ru
ID  - VSGTU_2014_135_2_a0
ER  - 
%0 Journal Article
%A O. V. Alexeeva
%A V. V. Kornienko
%A D. V. Kornienko
%T On the Lowest by $x$-variable Terms Influence on the Spectral Properties of Dirichlet Problem for the Hyperbolic Systems
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2014
%P 16-21
%V 135
%N 2
%U http://geodesic.mathdoc.fr/item/VSGTU_2014_135_2_a0/
%G ru
%F VSGTU_2014_135_2_a0
O. V. Alexeeva; V. V. Kornienko; D. V. Kornienko. On the Lowest by $x$-variable Terms Influence on the Spectral Properties of Dirichlet Problem for the Hyperbolic Systems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 135 (2014) no. 2, pp. 16-21. http://geodesic.mathdoc.fr/item/VSGTU_2014_135_2_a0/

[1] A. A. Dezin, “Mixed problems for certain symmetric hyperbolic systems”, Dokl. Akad. Nauk SSSR (N.S.), 107:1 (1956), 13–16 (In Russian) | MR | Zbl

[2] A. A. Dezin, “Boundary value problems for certain symmetric linear first order systems”, Mat. Sb. (N.S.), 49(91):4 (1959), 459–484 (In Russian) | Zbl

[3] A. A. Dezin, “Existence and uniqueness theorems for solutions of boundary problems for partial differential equations in function spaces”, Uspekhi Mat. Nauk, 14:3(87) (1959), 21–73 (In Russian) | MR | Zbl

[4] V. K. Romanko, “Mixed boundary value problems for a system of equations”, Sov. Math., Dokl., 33:1 (1986), 38–41 | Zbl

[5] A. A. Dezin, Obshchiye voprosy teorii granichnykh zadach [General questions of the theory of boundary value problems], Nauka, Moscow, 1980, 208 pp. (In Russian) | MR | Zbl

[6] S. Kachmazh, G. Shteyngauz, Teoriya ortogonal'nykh ryadov [Theory of orthogonal series], Fiz.-Mat. Lit., Moscow, 1958, 507 pp. (In Russian) | MR

[7] N. Dunford, J. T. Schwartz, Linear Operators, v. 1, General Theory, John Wiley Sons, New York – London, 1988, xiv+858 pp.

[8] D. V. Kornienko, “On the spectral problems for linear systems of operator-differential equations”, Vestnik Eletsk. Gos. Univ. Bunina. Ser. Mat. Fiz., 5 (2004), 71–78 (In Russian)

[9] D. V. Kornienko, “On a spectral problem for two hyperbolic systems”, Differ. Equ., 42:1 (2006), 101–111 | DOI | MR | Zbl

[10] D. V. Kornienko, “On the spectrum of the Dirichlet problem for systems of operator-differential equations”, Differ. Equ., 42:8 (2006), 1124–1133 | DOI | MR | Zbl

[11] A. A. Dezin, “On weak and strong irregularity”, Differ. Uravn., 17:10 (1981), 1851–1858 (In Russian) | MR

[12] O. V. Alexeeva, “On the spectrum of the Dirichlet problem for two elliptic systems”, Nauchnye Vedomosti Belgorodckogo Gosudarstvennogo Universiteta. Ser. Matematika. Fizika, 17(88):20 (2010), 5–9 (In Russian)