Boundary value problem for mixed type equation of the third order with periodic conditions
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 132 (2013) no. 3, pp. 29-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem for the equation of the mixed elliptic-hyperbolic type with nonlocal boundary conditions is viewed. This problem is reduced to the inverse problem for elliptic-hyperbolic equation with unknown right-hand parts. The criterion of the uniqueness is established. The explicit solution is constructed as the sum of orthogonal trigonometric series of the one-dimensional spectral problem eigenfunctions. The argumentation of the series convergence under some restrictions is given. The stability of the solution by the boundary functions is proved.
Keywords: equations of the mixed type of third order, direct and inverse problems, spectral method, uniqueness, stability.
Mots-clés : existense
@article{VSGTU_2013_132_3_a2,
     author = {K. B. Sabitov and G. Yu. Udalova},
     title = {Boundary value problem for mixed type equation of the third order with periodic conditions},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {29--45},
     year = {2013},
     volume = {132},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_132_3_a2/}
}
TY  - JOUR
AU  - K. B. Sabitov
AU  - G. Yu. Udalova
TI  - Boundary value problem for mixed type equation of the third order with periodic conditions
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 29
EP  - 45
VL  - 132
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_132_3_a2/
LA  - ru
ID  - VSGTU_2013_132_3_a2
ER  - 
%0 Journal Article
%A K. B. Sabitov
%A G. Yu. Udalova
%T Boundary value problem for mixed type equation of the third order with periodic conditions
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 29-45
%V 132
%N 3
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_132_3_a2/
%G ru
%F VSGTU_2013_132_3_a2
K. B. Sabitov; G. Yu. Udalova. Boundary value problem for mixed type equation of the third order with periodic conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 132 (2013) no. 3, pp. 29-45. http://geodesic.mathdoc.fr/item/VSGTU_2013_132_3_a2/

[1] A. V. Bitsadze, M. S. Salakhitdinov, “On the theory of equations of mixed-composite type”, Sibirsk. Mat. Zh., 2:1 (1961), 7–19 | Zbl

[2] T. D. Dzhuraev, Boundary value problems for equations of mixed and mixed-composite types, Fan, Tashkent, 1979, 239 pp. | MR | Zbl

[3] A. I. Kozhanov, Boundary Value Problems for Odd-Order Equations of Mathematical Physics, Novosibirsk. Univ., Novosibirsk, 1990, 150 pp.

[4] K. B. Sabitov, “A boundary value problem for a third-order equation of mixed type”, Dokl. Math., 80:1 (2009), 565–568 | DOI | MR | Zbl

[5] K. B. Sabitov, “The Dirichlet problem for a third-order equation of mixed type in a rectangular domain”, Differ. Equ., 47:5 (2011), 706–714 | DOI | MR | Zbl

[6] A. N. Tikhonov, “On the stability of inverse problems”, C. R. (Doklady) Acad. Sci. URSS (N.S.), 39:5 (1943), 176–179 | MR | Zbl

[7] M. M. Lavrent'ev, “On an inverse problem for the wave equation”, Soviet Math. Dokl., 5:3 (1964), 970–972 | MR | Zbl

[8] M. M. Lavrent'ev, K. G. Reznitskaya, V. G. Yakhno, One-dimensional inverse problems of mathematical physics, Nauka, Sibirsk. Otdel., Novosibirsk, 1982, 88 pp. | MR

[9] V. K. Ivanov, V. V. Vasin, V. P. Tanana, Theory of linear ill-posed problems and its applications, Nauka, Moscow, 1978, 206 pp. | MR

[10] A. I. Prilepko, D. S. Tkachenko, “Properties of solutions of a parabolic equation and the uniqueness of the solution of the inverse source problem with integral overdetermination”, Comput. Math. Math. Phys., 43:4 (2003), 537–546 | MR | Zbl

[11] A. V. Baev, “Uniqueness of a solution of an inverse problem for an equation in acoustics, and an inverse spectral problem”, Mat. Zametki, 47:2 (1990), 149–151 | MR | Zbl

[12] A. M. Denisov, Introduction to the theory of inverse problems, Moscow State Univ., Moscow, 1994, 285 pp.

[13] A. I. Kozhanov, “Nonlinear loaded equations and inverse problems”, Comput. Math. Math. Phys., 44:4 (2004), 657–675 | MR | Zbl

[14] K. B. Sabitov, É. M. Safin, “The inverse problem for an equation of mixed parabolic-hyperbolic type”, Math. Notes, 87:6 (2010), 880–889 | DOI | DOI | MR | Zbl

[15] K. B. Sabitov, N. V. Martem'yanova, “A nonlocal inverse problem for a mixed-type equation”, Russian Math. (Iz. VUZ), 55:2 (2011), 61–74 | DOI | MR | Zbl

[16] K. B. Sabitov, N. V. Martem'yanova, “An inverse problem for an equation of elliptic-hyperbolic type with a nonlocal boundary condition”, Siberian Math. J., 53:3 (2012), 507–519 | DOI | MR | Zbl

[17] K. B. Sabitov, I. A. Khadzhi, “The boundary-value problem for the Lavrent'ev–Bitsadze equation with unknown right-hand side”, Russian Math. (Iz. VUZ), 55:5 (2011), 35–42 | DOI | MR | Zbl

[18] G. Yu. Udalova, “Inverse problem for equation of mixed elliptic-hyperbolic type”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2010, no. 4(78), 89–97

[19] G. Yu. Udalova, “Inverse problem for equation with Lavrentev–Bitsadze operator”, Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy Akademii Nauk, 14:1 (2012), 98–111

[20] G. Yu. Udalova, “The boundary-value problem for the Lavrent'ev–Bitsadze equation with unknown right-hand side”, Nauchnyye Vedomosti Belgorodskogo Gos. Un-ta. Ser. Matematika. Fizika, 26:5 (2012), 209–225

[21] A. Ja. Hinchin, Continued fractions, Nauka, Moscow, 1978, 112 pp. | MR

[22] V. I. Arnol'd, “Small denominators and problems of stability of motion in classical and celestial mechanics”, Russian Math. Surveys, 18:6 (1963), 85–191 | DOI | MR | Zbl

[23] A. Zigmund, Trigonometric series, v. 1, Mir, Moscow, 1965, 616 pp. | MR