The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 131 (2013) no. 2, pp. 131-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the spectral problems for curl, gradient of divergence and Stokes operators. The eigenvalues are defined by zeroes of half-integer order Bessel functions and derivatives thereof. The eigenfunctions are given in an explicit form by half-integer order Bessel functions and spherical harmonics. Their applications are described. The completeness of eigenfunctions of curl operator in $\mathbf{L}_{2}(B)$ is proved.
Keywords: curl, Stokes operator, eigenvalues and eigenfunctions of operators, Fourier series.
Mots-clés : gradient of divergence
@article{VSGTU_2013_131_2_a15,
     author = {R. S. Saks},
     title = {The eigenfunctions of curl, gradient of divergence and {Stokes} operators. {Applications}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {131--146},
     year = {2013},
     volume = {131},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_131_2_a15/}
}
TY  - JOUR
AU  - R. S. Saks
TI  - The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 131
EP  - 146
VL  - 131
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_131_2_a15/
LA  - ru
ID  - VSGTU_2013_131_2_a15
ER  - 
%0 Journal Article
%A R. S. Saks
%T The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 131-146
%V 131
%N 2
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_131_2_a15/
%G ru
%F VSGTU_2013_131_2_a15
R. S. Saks. The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 131 (2013) no. 2, pp. 131-146. http://geodesic.mathdoc.fr/item/VSGTU_2013_131_2_a15/

[1] O. A. Ladyzhenskaya, Mathematical questions of the dynamics of a viscous incompressible fluid, Nauka, Moscow, 1970, 288 pp. | MR

[2] S. Chandrasekhar, “On force-free magnetic fields”, Proc. Nat. Ac. Sci. USA, 42:1 (1956), 1–5 | DOI | MR | Zbl

[3] J. B. Taylor, “Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields”, Phys. Rev. Lett., 33:19 (1974), 1139–1141 | DOI

[4] V. V. Kozlov, General vortex theory, Udmurtskiy Universitet, Izhevsk, 1998, 240 pp. | MR

[5] V. V. Pukhnachev, “Symmetries in Navier–Stokes equations”, Uspehi Mehaniki, 4:1 (2006), 6–76

[6] A. S. Makhalov, V. P. Nikolaenko, “Global solubility of the three-dimensional Navier-Stokes equations with uniformly large initial vorticity”, Russian Math. Surveys, 58:2 (2003), 287–318 | DOI | DOI | MR | Zbl

[7] V. Arnold, “Sur la topologie des écoulements stationnaires des fluides parfaits”, C. R. Acad. Sci. Paris, 261 (1965), 17–20 | MR | Zbl

[8] M. Hénon, “Sur la topologie des lignes de courant dans un cas particulier”, C. R. Acad. Sci. Paris, 262 (1966), 312–314

[9] R. S. Saks, “The boundary value problems for the system $\mathop{\rm rot} u+\lambda u=h$”, Soviet Math. Dokl., 12:5 (1971), 1240–1244 | MR | Zbl

[10] R. S. Saks, “The boundary value problems for the system $\mathop{\rm rot} u+\lambda u=h$”, Differ. Uravn., 8:1 (1972), 126–133 | MR | Zbl

[11] B. R. Vainberg, V. V. Grushin, “Uniformly nonelliptic problems. I”, Math. USSR-Sb., 1:4 (1967), 543–568 | DOI | MR | Zbl

[12] R. S. Saks, “Spectrum of the curl operator in a ball under sliding conditions and eigenvalues for oscillations of an elastic ball fixed on the boundary”, Trudy Conf. Complex Analysis, Differential Equations, and Related Topics, IV, Ufa, 2000, 61–68

[13] S. Chandrasekhar, P. S. Kendall, “On force-free magnetic fields”, Astrophys. J., 126 (1957), 457–460 | DOI | MR

[14] D. Montgomery, L. Turner, G. Vahala, “Three-dimentional magnetohydrodyamic turbulence in cylindrical geometry”, Phys. Fluids, 21:5 (1978), 757–764 | DOI | Zbl

[15] P. E. Berhin, “A selfadjoint boundary-value problem for the system $^*du+\lambda u=f$”, Sov. Math., Dokl., 16:1 (1975), 557–559 | MR | MR | Zbl

[16] Z. Yoshida, Y. Giga, “Remark on spectra of operator rot”, Math. Z., 204:2 (1990), 235–245 | DOI | MR | Zbl

[17] R. Picard, “On a selfadjoint realization of curl and some of its applications”, Riceche di Matematica, XLVII (1998), 153–180 | MR | Zbl

[18] O. A. Ladyzhenskaya, “Construction of Bases in Spaces of Solenoidal Vector Fields”, J. Math. Sci. (N. Y.), 130:4 (2005), 4827–4835 | DOI | MR | Zbl

[19] R. S. Saks, “Solution of the spectral problem for the curl and Stokes operators with periodic boundary conditions”, J. Math. Sci. (N. Y.), 136:2 (2006), 3794–3811 | DOI | MR | Zbl

[20] R. S. Saks, “Global solutions of the Navier–Stokes equations in a uniformly rotating space”, Theoret. and Math. Phys., 162:2 (2010), 163–178 | DOI | DOI | MR | Zbl

[21] R. S. Saks, “Cauchy problem for the Navier–Stokes equations, Fourier method”, Ufa Mathematical Journal, 3:1 (2011), 51–77 | Zbl

[22] R. S. Saks, “Spectral problems for the curl and Stokes operators”, Dokl. Math., 76:2 (2007), 724–728 | DOI | MR | Zbl

[23] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Mir, Moscow, 1981, 408 pp. | MR | Zbl

[24] V. S. Vladimirov, The equations of mathematical physics, Nauka, Moscow, 1988, 512 pp. | MR

[25] H. Weyl, “The method of orthogonal projection in potential theory”, Duke Math., 7 (1940), 411–444 | DOI | MR | Zbl

[26] R. S. Saks, “On properties of the generalized elliptic pseudo-differential operators on closed manifolds”, J. Math. Sci. (New York), 99:1 (2000), 936–968 | DOI | MR | Zbl

[27] V. A. Solonnikov, “Overdetermined elliptic boundary value problems”, Boundary-value problems of mathematical physics and related problems of function theory. Part 5, Zap. Nauchn. Sem. LOMI, 21, “Nauka”, Leningrad. Otdel., Leningrad, 1971, 112–158 | MR | Zbl