$L_p$-estimates of the nontangential maximal function for solutions a second-order elliptic equation solutions
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 130 (2013) no. 1, pp. 53-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work contains the survey of results related to the study of near the boundary behavior of the solution of the Dirichlet problem with the boundary function in $L_p,$ $p > 1$ for a second-order elliptic equation. There are new statements and some unsolved problems in this direction.
Mots-clés : elliptic equation
Keywords: Dirichlet problem, function space.
@article{VSGTU_2013_130_1_a6,
     author = {A. K. Gushchin},
     title = {$L_p$-estimates of the nontangential maximal function for solutions a second-order elliptic equation solutions},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {53--69},
     year = {2013},
     volume = {130},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a6/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - $L_p$-estimates of the nontangential maximal function for solutions a second-order elliptic equation solutions
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 53
EP  - 69
VL  - 130
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a6/
LA  - ru
ID  - VSGTU_2013_130_1_a6
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T $L_p$-estimates of the nontangential maximal function for solutions a second-order elliptic equation solutions
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 53-69
%V 130
%N 1
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a6/
%G ru
%F VSGTU_2013_130_1_a6
A. K. Gushchin. $L_p$-estimates of the nontangential maximal function for solutions a second-order elliptic equation solutions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 130 (2013) no. 1, pp. 53-69. http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a6/

[1] L. Carleson, “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80:4 (1958), 921–930 | DOI | MR | Zbl

[2] L. Carleson, “Interpolation by bounded analytic functions and the corona problem”, Ann. of Math., 76:3 (1962), 547–559 | DOI | MR | Zbl

[3] L. Hormander, “$L^p$-estimates for (pluri-) subharmonic functions”, Math. scand., 20 (1967), 65–78 | MR | Zbl

[4] A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation”, Math. USSR-Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl

[5] A. K. Gushchin, V. P. Mikhailov, “On solvability of nonlocal problems for a second-order elliptic equation”, Russian Acad. Sci. Sb. Math., 81:1 (1995), 101–136 | DOI | MR | Zbl

[6] A. K. Gushchin, V. P. Mikhailov, “Internal estimates of general solutions of second order elliptic equation”, Vestn. SamGU. Yestestvennonauchnaya seriya, 2008, no. 8/1(67), 76–94

[7] V. P. Mikhailov, “The Dirichlet problem for a second order elliptic equation”, Differents. Uravneniya, 12:10 (1976), 1877–1891 | MR

[8] A. K. Gushchin, “On the interior smoothness of solutions to second-order elliptic equations”, Siberian Math. J., 46:5 (2005), 826–840 | DOI | MR | Zbl

[9] A. K. Gushchin, “A strengthening of the interior Hölder continuity property for solutions of the Dirichlet problem for a second-order elliptic equation”, Theoret. and Math. Phys., 157:3 (2008), 1655–1670 | DOI | DOI | MR | Zbl

[10] A. K. Gushchin, V. P. Mikhailov, “On boundary values in $L_p$, $p>1$, of solutions of elliptic equations”, Math. USSR-Sb., 36:1 (1980), 1–19 | DOI | MR | Zbl | Zbl

[11] A. K. Gushchin, V. P. Mikhailov, “On boundary values of solutions of elliptic equations”, Generalized functions and their applications in mathematical physics, Proceedings of the International Conference, Moscow, 1981, 189–205

[12] I. M. Petrushko, “On boundary values in $L_p$, $p>1$, of solutions of elliptic equations in domains with a Lyapunov boundary”, Math. USSR-Sb., 48:2 (1984), 565–585 | DOI | MR | Zbl | Zbl

[13] Yu. A. Mikhailov, “Boundary values in $L_p$, $p>1$, of solutions of a second-order linear elliptic equation”, Differents. Uravneniya, 19:2 (1983), 318–337 | MR

[14] Yu. A. Alkhutov, V. A. Kondrat'ev, “Solvability of the Dirichlet problem for second-order elliptic equations in a convex domain”, Differ. Equ., 28:5 (1992), 650–662 | MR

[15] Yu. A. Alkhutov, “$L_p$-estimates of the solution of the Dirichlet problem for second-order elliptic equations”, Sb. Math., 189:1 (1998), 1–17 | DOI | DOI | MR | Zbl

[16] A. K. Gushchin, “On the solvability of the Dirichlet problem with a boundary function from $L\sb p$ for a second-order elliptic equation”, Dokl. Math., 83:2 (2011), 219–221 | DOI | MR | Zbl

[17] A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Sb. Math., 203:1 (2012), 1–27 | DOI | DOI | MR | Zbl

[18] E. De Giorgi, “Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari”, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur, 3:3 (1957), 25–43 | MR | Zbl

[19] J. Nash, “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math, 80:4 (1958), 931–954 | DOI | MR | Zbl

[20] J. Moser, “A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations”, Comm. Pure Appl. Math, 13:3 (1960), 457–468 | DOI | MR | Zbl

[21] A. K. Gushchin, “Estimates of the nontangential maximal function for solutions of a second-order elliptic equation”, Dokl. Math., 86:2 (2012), 667–669 | DOI | MR | Zbl

[22] Linear and quasilinear equations of elliptic type, Nauka, Moscow, 1973, 576 pp. | MR

[23] D. Gilbarg, N. Trudinger, Elliptic partial differentiol equations of second order, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1983, 529 pp. ; D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 pp. | MR | Zbl | MR | Zbl

[24] V. P. Mikhailov, A. K. Gushchin, “Additional chapters of course “Equations of Mathematical Physics””, Lekts. Kursy NOC, 7, Steklov Math. Inst., RAS, Moscow, 2007, 3–144 | DOI | DOI

[25] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 30, Prinston University Press, Prinston, N.J., 1970, xiv+290 pp. ; I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973, 344 pp. | MR | MR

[26] D. L. Burkholder, R. F. Gundy, “Distribution function inequalities for the area integral”, Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, VI, Studia Math., 44 (1972), 527–544 . | MR | Zbl

[27] B. E. J. Dahlberg, “Weighted norm inequalities for the Lusin area integral and the nontangential maximal functions for functions harmonic in a Lipschitz domain”, Studia Math., 67:3 (1980), 297–314 | MR | Zbl

[28] V. Yu. Shelepov, “On boundary properties of solutions of elliptic equations in multidimensional domains representable by means of the difference of convex functions”, Math. USSR-Sb., 61:2 (1988), 437–460 | DOI | MR | Zbl | Zbl

[29] H. Fatou, “Séries trigonometriques et séries de Taylor”, Acta Math., 30:1 (1906), 335–400 | DOI | MR | Zbl

[30] I. I. Privalov, The Cauchy Integral, Saratov, 1919, 96 pp.

[31] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, 32, Prinston University Press, Prinston, N.J., 1971, x+297 pp. ; I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 333 pp. | MR | Zbl

[32] V. A. Kondratiev, E. M. Landis, “Qualitative theory of second order linear partial differential equations”, Partial differential equations – 3, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 32, VINITI, Moscow, 1988, 99–215 | MR | Zbl

[33] N. K. Nikol'skiy, Lectures on the shift operator, Nauka, Moscow, 1980, 384 pp. | MR

[34] J. B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, 96, Academic Press, Inc., New York, London, 1981, xvi+467 pp. ; Dzh. Garnet, Ogranichennye analiticheskie funktsii, Mir, M., 1984, 469 pp. | MR | Zbl | MR

[35] V. Zh. Dumanyan, “Solvability of the Dirichlet problem for a general second-order elliptic equation”, Sb. Math., 202:7 (2011), 1001–1020 | DOI | DOI | MR | Zbl

[36] A. K. Gushchin, V. P. Mikhailov, “On the continuity of the solutions of a class of non-local problems for an elliptic equation”, Sb. Math., 186:2 (1995), 197–219 | DOI | MR | Zbl

[37] A. K. Gushchin, V. P. Mikhailov, “On the unique solvability of nonlocal problems for an elliptic equation”, Dokl. Akad. Nauk, 351:1 (1996), 7–8 | MR

[38] A. K. Gushchin, “A condition for the complete continuity of operators arising in nonlocal problems for elliptic equations”, Dokl. Math., 62:1 (2000), 32–34 | MR | MR | Zbl

[39] A. K. Gushchin, “A condition for the compactness of operators in a certain class and its application to the analysis of the solubility of non-local problems for elliptic equations”, Sb. Math., 193:5 (2002), 649–668 | DOI | DOI | MR | Zbl

[40] A. K. Gushchin, “$L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem”, Theoret. and Math. Phys., 174:2 (2013), 209–219 | DOI | DOI | Zbl