Star product on the Lie coalgebra and its application for calculation of quantum integrals of motion
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 130 (2013) no. 1, pp. 379-386
Cet article a éte moissonné depuis la source Math-Net.Ru
The article gives an algorithm for constructing quantum integrals of motion on the basis of well-known classic integrals. To construct quantum integrals, we apply star product of the operators' symbols, which is used in the quantization theory. A non-trivial example of the Klein–Fock equation is considered on the four-dimensional Lie group.
Keywords:
star product, Lie groups
Mots-clés : Lie algebras, quantization.
Mots-clés : Lie algebras, quantization.
@article{VSGTU_2013_130_1_a38,
author = {A. S. Popov and I. V. Shirokov},
title = {Star product on the {Lie} coalgebra and its application for calculation of quantum integrals of motion},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {379--386},
year = {2013},
volume = {130},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a38/}
}
TY - JOUR AU - A. S. Popov AU - I. V. Shirokov TI - Star product on the Lie coalgebra and its application for calculation of quantum integrals of motion JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 379 EP - 386 VL - 130 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a38/ LA - ru ID - VSGTU_2013_130_1_a38 ER -
%0 Journal Article %A A. S. Popov %A I. V. Shirokov %T Star product on the Lie coalgebra and its application for calculation of quantum integrals of motion %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 379-386 %V 130 %N 1 %U http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a38/ %G ru %F VSGTU_2013_130_1_a38
A. S. Popov; I. V. Shirokov. Star product on the Lie coalgebra and its application for calculation of quantum integrals of motion. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 130 (2013) no. 1, pp. 379-386. http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a38/
[1] F. A. Berezin, “Some remarks about the associated envelope of a Lie algebra”, Funct. Anal. Appl., 1:2 (1967), 91–102 | DOI | MR | Zbl
[2] V. V. Trofimov, A. T. Fomenko, Algebra and Geometry of Integrable Hamiltonian Differential Equations, Factorial, Moscow, 1995, 448 pp. | MR | Zbl
[3] A. V. Shapovalov, I. V. Shirokov, “Noncommutative integration of linear differential equations”, Theoret. and Math. Phys., 104:2 (1995), 921–934 | DOI | MR | Zbl
[4] S. P. Baranovskii, V. V. Mikheyev, I. V. Shirokov, “Quantum Hamiltonian Systems on K-Orbits: Semiclassical Spectrum of the Asymmetric Top”, Theoret. and Math. Phys., 129:1 (2001), 1311–1319 | DOI | DOI | MR | Zbl