Star product on the Lie coalgebra and its application for calculation of quantum integrals of motion
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 130 (2013) no. 1, pp. 379-386 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article gives an algorithm for constructing quantum integrals of motion on the basis of well-known classic integrals. To construct quantum integrals, we apply star product of the operators' symbols, which is used in the quantization theory. A non-trivial example of the Klein–Fock equation is considered on the four-dimensional Lie group.
Keywords: star product, Lie groups
Mots-clés : Lie algebras, quantization.
@article{VSGTU_2013_130_1_a38,
     author = {A. S. Popov and I. V. Shirokov},
     title = {Star product on the {Lie} coalgebra and its application for calculation of quantum integrals of motion},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {379--386},
     year = {2013},
     volume = {130},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a38/}
}
TY  - JOUR
AU  - A. S. Popov
AU  - I. V. Shirokov
TI  - Star product on the Lie coalgebra and its application for calculation of quantum integrals of motion
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 379
EP  - 386
VL  - 130
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a38/
LA  - ru
ID  - VSGTU_2013_130_1_a38
ER  - 
%0 Journal Article
%A A. S. Popov
%A I. V. Shirokov
%T Star product on the Lie coalgebra and its application for calculation of quantum integrals of motion
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 379-386
%V 130
%N 1
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a38/
%G ru
%F VSGTU_2013_130_1_a38
A. S. Popov; I. V. Shirokov. Star product on the Lie coalgebra and its application for calculation of quantum integrals of motion. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 130 (2013) no. 1, pp. 379-386. http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a38/

[1] F. A. Berezin, “Some remarks about the associated envelope of a Lie algebra”, Funct. Anal. Appl., 1:2 (1967), 91–102 | DOI | MR | Zbl

[2] V. V. Trofimov, A. T. Fomenko, Algebra and Geometry of Integrable Hamiltonian Differential Equations, Factorial, Moscow, 1995, 448 pp. | MR | Zbl

[3] A. V. Shapovalov, I. V. Shirokov, “Noncommutative integration of linear differential equations”, Theoret. and Math. Phys., 104:2 (1995), 921–934 | DOI | MR | Zbl

[4] S. P. Baranovskii, V. V. Mikheyev, I. V. Shirokov, “Quantum Hamiltonian Systems on K-Orbits: Semiclassical Spectrum of the Asymmetric Top”, Theoret. and Math. Phys., 129:1 (2001), 1311–1319 | DOI | DOI | MR | Zbl