@article{VSGTU_2013_130_1_a32,
author = {E. V. Antropova and A. A. Bryzgalov and F. I. Karmanov},
title = {The energy levels and eigen wave functions of electrons in quantum rings in the magnetic field},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {326--333},
year = {2013},
volume = {130},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a32/}
}
TY - JOUR AU - E. V. Antropova AU - A. A. Bryzgalov AU - F. I. Karmanov TI - The energy levels and eigen wave functions of electrons in quantum rings in the magnetic field JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 326 EP - 333 VL - 130 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a32/ LA - ru ID - VSGTU_2013_130_1_a32 ER -
%0 Journal Article %A E. V. Antropova %A A. A. Bryzgalov %A F. I. Karmanov %T The energy levels and eigen wave functions of electrons in quantum rings in the magnetic field %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 326-333 %V 130 %N 1 %U http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a32/ %G ru %F VSGTU_2013_130_1_a32
E. V. Antropova; A. A. Bryzgalov; F. I. Karmanov. The energy levels and eigen wave functions of electrons in quantum rings in the magnetic field. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 130 (2013) no. 1, pp. 326-333. http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a32/
[1] A. G. Ushveridze Quasi-exactly solvable models in quantum mechanics, Soviet J. Particles and Nuclei, 20:5 (1989), 504–528 | MR
[2] W.-C. Tan, J. C. Inkson, “Electron states in a two-dimensional ring — an exactly soluble model”, Semicond. Sci. Technol., 11:11 (1996), 1635–1641 | DOI
[3] H. A. Mavromatis, “Generalization of Casas–Plastino potentials to three dimensions”, Amer. J. Phys., 68:3 (2000), 287–288 | DOI | MR
[4] A. A. Bryzgalov, F. I. Karmanov, “Method for splitting into physical processes in the problem on the time dynamics of electron wave functions of a two-dimensional quantum ring”, Math. Models Comput. Simul., 3:1 (2011), 25–34 | DOI | Zbl
[5] S. Yu. Slavyanov, W. Lay, Special functions. A unified theory based on singularities., Oxford University Press, New York, 2000, xvi+293 pp. ; S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii: Edinaya teoriya, osnovannaya na analize, Nevskii Dialekt, SPb., 2002, 312 pp. | MR | Zbl
[6] E. R. Arriola, J. S. Dehesa, A. Zarzo, “Spectral properties of the biconfluent Heun differential equation”, J. Comput. Appl. Math., 37:1–3 (1991), 161–169 | DOI | MR | Zbl
[7] A. F. Nikiforov, V. B. Uvarov, Special functions of mathematical physics, Nauka, Moscow, 1984, 344 pp. | MR