@article{VSGTU_2013_130_1_a23,
author = {E. N. Ogorodnikov},
title = {On a class of fractional differential equations for~mathematical models of dynamic system with~memory},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {245--252},
year = {2013},
volume = {130},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a23/}
}
TY - JOUR AU - E. N. Ogorodnikov TI - On a class of fractional differential equations for mathematical models of dynamic system with memory JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 245 EP - 252 VL - 130 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a23/ LA - ru ID - VSGTU_2013_130_1_a23 ER -
%0 Journal Article %A E. N. Ogorodnikov %T On a class of fractional differential equations for mathematical models of dynamic system with memory %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 245-252 %V 130 %N 1 %U http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a23/ %G ru %F VSGTU_2013_130_1_a23
E. N. Ogorodnikov. On a class of fractional differential equations for mathematical models of dynamic system with memory. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 130 (2013) no. 1, pp. 245-252. http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a23/
[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integrals and derivatives of fractional order and some of their applications, Nauka i Tekhnika, Minsk, 1987, 688 pp. | MR | Zbl
[2] A. M. Nakhushev, Fractional calculus and its applications, Fizmatlit, Moscow, 2003, 271 pp. | Zbl
[3] E. N. Ogorodnikov, “Mathematical models of the fractional oscillator, setting and structure of the Cauchy problem”, Proceedings of the Sixth All-Russian Scientific Conference with international participation (1–4 June 2009). Part 1, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2009, 177–181
[4] F. Mainardi, “Fractional relaxation-oscillation and fractional diffusion-wave phenomena”, Chaos, Solitons and Fractals, 7:9 (1996), 1461–1477 | DOI | MR | Zbl
[5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, ed. J. van Mill, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl
[6] E. N. Ogorodnikov, N. S. Yashagin, “Some special functions in the solution to Cauchy problem for a fractional oscillating equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 1(18), 276–279 | DOI
[7] E. N. Ogorodnikov, N. S. Yashagin, “Setting and solving of the Cauchy type problems for the second order differential equations with Riemann–Liouville fractional derivatives”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1(20), 24–36 | DOI
[8] E. N. Ogorodnikov, N. S. Yashagin, V. P. Radchenko, “Rheological model of viscoelastic body with memory and differential equations of fractional oscillator”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 1(22), 255–268 | DOI
[9] M. Caputo, F. Mainardi, “A new dissipation model based on memory mechanism”, Pure Appl. Geophys., 91:1 (1971), 134–147 | DOI
[10] R. L. Bagley, P. J. Torvik, “On the Fractional Calculus Model of Viscoelastic Behavior”, J. Rheol., 30:1 (1986), 133–155 | DOI | Zbl
[11] Yu. N. Rabotnov, Elements of continuum mechanics of materials with memory, Nauka, Moscow, 1977, 383 pp. | MR
[12] I. H. Barrett, “Differential equations of non-integer orde”, Canad. J. Math., 6:4 (1954), 529–541 | DOI | MR | Zbl
[13] E. N. Ogorodnikov, “Some aspects of initial value problems theory for differential equations with Riemann–Liouville derivatives”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 5(21), 10–23 | DOI