On the existence of boundary values of solutions of elliptic equations
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 130 (2013) no. 1, pp. 97-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we show a survey of results related to the existence of boundary values of solutions of elliptic equations.
Mots-clés : elliptic equations
Keywords: classical and generalized solutions, limits of boundary values, existence theorems.
@article{VSGTU_2013_130_1_a10,
     author = {V. P. Mikhailov},
     title = {On the existence of boundary values of solutions of elliptic equations},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {97--105},
     year = {2013},
     volume = {130},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a10/}
}
TY  - JOUR
AU  - V. P. Mikhailov
TI  - On the existence of boundary values of solutions of elliptic equations
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 97
EP  - 105
VL  - 130
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a10/
LA  - ru
ID  - VSGTU_2013_130_1_a10
ER  - 
%0 Journal Article
%A V. P. Mikhailov
%T On the existence of boundary values of solutions of elliptic equations
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 97-105
%V 130
%N 1
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a10/
%G ru
%F VSGTU_2013_130_1_a10
V. P. Mikhailov. On the existence of boundary values of solutions of elliptic equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 130 (2013) no. 1, pp. 97-105. http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a10/

[1] V. P. Mikhailov, “The Dirichlet problem for a second order elliptic equation”, Differ. Uravn., 12:10 (1976), 1877–1891

[2] V. P. Mikhailov, “On the boundary values of solutions of second-order elliptic equations”, Math. USSR-Sb., 29:1 (1976), 3–11 | DOI | MR | Zbl

[3] A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation”, Math. USSR-Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl

[4] A. K. Gushchin, V. P. Mikhailov, “On the continuity of the solutions of a class of non-local problems for an elliptic equation”, Sb. Math., 186:2 (1995), 197–219 | DOI | MR | Zbl

[5] A. K. Gushchin, V. P. Mikhailov, “On the existence of boundary values of solutions of elliptic equations”, Vestn. SamGU. Yestestvennonauchnaya seriya, 2008, no. 8/1(67), 61–75

[6] A. K. Gushchin, V. P. Mikhailov, “Internal estimates of general solutions of second order elliptic equation”, Vestn. SamGU. Yestestvennonauchnaya seriya, 2008, no. 8/1(67), 76–94

[7] A. K. Gushchin, V. P. Mikhailov, “On the existence of boundary values of solutions of an elliptic equation”, Math. USSR-Sb., 73:1 (1992), 171–194 | DOI | MR | Zbl

[8] A. K. Gushchin, V. P. Mikhailov, “On boundary values in $L_p$, $p>1$, of solutions of elliptic equations”, Math. USSR-Sb., 36:1 (1980), 1–19 | DOI | MR | Zbl | Zbl

[9] V. P. Mikhailov, “On one sufficient condition of the existence of limit values of polyharmonics functions on the boundary”, Differential equations and their applications, Proceedings of the Second International Seminar, Samara, 1998, 115–121

[10] V. P. Mikhailov, “Existence of boundary values for metaharmonic functions”, Sb. Math., 190:10 (1999), 1417–1448 | DOI | DOI | MR | Zbl

[11] A. K. Gushchin, “$L_p$-estimates of the nontangential maximal function for solutions a second-order elliptic equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 1(30), 53–69 | DOI

[12] F. Riesz, “Über die Randwerte einer analytischen Funktion”, Math. Z., 18 (1923), 87–95 | DOI | Zbl

[13] J. E. Littlewood, R. E. A. C. Paley, “Theorems on Fourier Series and Power Series”, J. London Math. Soc., 6:3 (1931), 230–233 | DOI

[14] J. E. Littlewood, R. E. A. C. Paley, “Theorems on Fourier Series and Power Series (II)”, Proc. London Math. Soc., 42:1 (1937), 52–89 | DOI

[15] J. E. Littlewood, R. E. A. C. Paley, “Theorems on Fourier Series and Power Series (III)”, Proc. London Math. Soc., 43:2 (1938), 105–126 | DOI

[16] J. Marcinkiewicz, A. Zygmund, “A theorem of Lusin. Part I”, Duke Math. J., 4:3 (1938), 473–485 | DOI