Keywords: classical and generalized solutions, limits of boundary values, existence theorems.
@article{VSGTU_2013_130_1_a10,
author = {V. P. Mikhailov},
title = {On the existence of boundary values of solutions of elliptic equations},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {97--105},
year = {2013},
volume = {130},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a10/}
}
TY - JOUR AU - V. P. Mikhailov TI - On the existence of boundary values of solutions of elliptic equations JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 97 EP - 105 VL - 130 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a10/ LA - ru ID - VSGTU_2013_130_1_a10 ER -
%0 Journal Article %A V. P. Mikhailov %T On the existence of boundary values of solutions of elliptic equations %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 97-105 %V 130 %N 1 %U http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a10/ %G ru %F VSGTU_2013_130_1_a10
V. P. Mikhailov. On the existence of boundary values of solutions of elliptic equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 130 (2013) no. 1, pp. 97-105. http://geodesic.mathdoc.fr/item/VSGTU_2013_130_1_a10/
[1] V. P. Mikhailov, “The Dirichlet problem for a second order elliptic equation”, Differ. Uravn., 12:10 (1976), 1877–1891
[2] V. P. Mikhailov, “On the boundary values of solutions of second-order elliptic equations”, Math. USSR-Sb., 29:1 (1976), 3–11 | DOI | MR | Zbl
[3] A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation”, Math. USSR-Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl
[4] A. K. Gushchin, V. P. Mikhailov, “On the continuity of the solutions of a class of non-local problems for an elliptic equation”, Sb. Math., 186:2 (1995), 197–219 | DOI | MR | Zbl
[5] A. K. Gushchin, V. P. Mikhailov, “On the existence of boundary values of solutions of elliptic equations”, Vestn. SamGU. Yestestvennonauchnaya seriya, 2008, no. 8/1(67), 61–75
[6] A. K. Gushchin, V. P. Mikhailov, “Internal estimates of general solutions of second order elliptic equation”, Vestn. SamGU. Yestestvennonauchnaya seriya, 2008, no. 8/1(67), 76–94
[7] A. K. Gushchin, V. P. Mikhailov, “On the existence of boundary values of solutions of an elliptic equation”, Math. USSR-Sb., 73:1 (1992), 171–194 | DOI | MR | Zbl
[8] A. K. Gushchin, V. P. Mikhailov, “On boundary values in $L_p$, $p>1$, of solutions of elliptic equations”, Math. USSR-Sb., 36:1 (1980), 1–19 | DOI | MR | Zbl | Zbl
[9] V. P. Mikhailov, “On one sufficient condition of the existence of limit values of polyharmonics functions on the boundary”, Differential equations and their applications, Proceedings of the Second International Seminar, Samara, 1998, 115–121
[10] V. P. Mikhailov, “Existence of boundary values for metaharmonic functions”, Sb. Math., 190:10 (1999), 1417–1448 | DOI | DOI | MR | Zbl
[11] A. K. Gushchin, “$L_p$-estimates of the nontangential maximal function for solutions a second-order elliptic equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 1(30), 53–69 | DOI
[12] F. Riesz, “Über die Randwerte einer analytischen Funktion”, Math. Z., 18 (1923), 87–95 | DOI | Zbl
[13] J. E. Littlewood, R. E. A. C. Paley, “Theorems on Fourier Series and Power Series”, J. London Math. Soc., 6:3 (1931), 230–233 | DOI
[14] J. E. Littlewood, R. E. A. C. Paley, “Theorems on Fourier Series and Power Series (II)”, Proc. London Math. Soc., 42:1 (1937), 52–89 | DOI
[15] J. E. Littlewood, R. E. A. C. Paley, “Theorems on Fourier Series and Power Series (III)”, Proc. London Math. Soc., 43:2 (1938), 105–126 | DOI
[16] J. Marcinkiewicz, A. Zygmund, “A theorem of Lusin. Part I”, Duke Math. J., 4:3 (1938), 473–485 | DOI