@article{VSGTU_2012_128_3_a4,
author = {E. A. Kozlova},
title = {Damping problem for the special class of the second order hyperbolic systems},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {47--52},
year = {2012},
volume = {128},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_128_3_a4/}
}
TY - JOUR AU - E. A. Kozlova TI - Damping problem for the special class of the second order hyperbolic systems JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 47 EP - 52 VL - 128 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_128_3_a4/ LA - ru ID - VSGTU_2012_128_3_a4 ER -
%0 Journal Article %A E. A. Kozlova %T Damping problem for the special class of the second order hyperbolic systems %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 47-52 %V 128 %N 3 %U http://geodesic.mathdoc.fr/item/VSGTU_2012_128_3_a4/ %G ru %F VSGTU_2012_128_3_a4
E. A. Kozlova. Damping problem for the special class of the second order hyperbolic systems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 128 (2012) no. 3, pp. 47-52. http://geodesic.mathdoc.fr/item/VSGTU_2012_128_3_a4/
[1] Bitsadze A. V., Some classes of partial differential equations, Nauka, Moscow, 1981, 448 pp. | MR | Zbl
[2] Gantmakher F. R., Theory of matrices, Nauka, Moscow, 1988, 549 pp. | MR | Zbl
[3] Kozlova E. A., “Damping problem for the hyperbolic equation with mixed derivative”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 4(25) (2011), 37–42 | DOI
[4] Kozlova E. A., “Control problem for the hyperbolic equation with the characteristics having the angular coefficients of the same sign”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 1(26), 243–247 | DOI
[5] Il'in V. A., “Boundary control of oscillations on two ends in terms of the generalized solution of the wave equation with finite energy”, Differ. Equ., 36:11 (2000), 1659–1675 | DOI | MR | Zbl
[6] Il'in V. A., Moiseev E. I., “Boundary control at two endpoints of a process described by the telegraph equation”, Dokl. Akad. Nauk, 394:2 (2004), 154–158 | MR | Zbl
[7] Andreev A. A., Leksina S. V., “Boundary control problem for the first boundary value problem for a second-order system of hyperbolic type”, Differ. Equ., 47:6 (2011), 848–854 | DOI | MR | Zbl
[8] Svetlitskiy B. A., Mechanics of Flexible Rods and Threads, Mashinostroenie, Moscow, 1978, 224 pp.
[9] Skorobogat'ko V. Ja., Investigation in the qualitative theory of partial differential equations, Naukova Dumka, Kiev, 1980, 244 pp. | MR | Zbl