Mots-clés : amplitude of oscillation.
@article{VSGTU_2012_128_3_a13,
author = {V. N. Anisimov and V. L. Litvinov and I. V. Korpen},
title = {On a method of analytical solution of wave equation describing the oscillations sistem with moving boundaries},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {145--151},
year = {2012},
volume = {128},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_128_3_a13/}
}
TY - JOUR AU - V. N. Anisimov AU - V. L. Litvinov AU - I. V. Korpen TI - On a method of analytical solution of wave equation describing the oscillations sistem with moving boundaries JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 145 EP - 151 VL - 128 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_128_3_a13/ LA - ru ID - VSGTU_2012_128_3_a13 ER -
%0 Journal Article %A V. N. Anisimov %A V. L. Litvinov %A I. V. Korpen %T On a method of analytical solution of wave equation describing the oscillations sistem with moving boundaries %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 145-151 %V 128 %N 3 %U http://geodesic.mathdoc.fr/item/VSGTU_2012_128_3_a13/ %G ru %F VSGTU_2012_128_3_a13
V. N. Anisimov; V. L. Litvinov; I. V. Korpen. On a method of analytical solution of wave equation describing the oscillations sistem with moving boundaries. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 128 (2012) no. 3, pp. 145-151. http://geodesic.mathdoc.fr/item/VSGTU_2012_128_3_a13/
[1] Savin G. N. Goroshko O. A., Dynamics of variable length strands, Naukova Dumka, 1962, 332 pp.
[2] Samarin Yu. P., Anisimov V. N., “Forced transverse vibrations of the flexible link at dispersal”, Izv. Vuzov. Mashinostroenie, 1986, no. 12, 17–21
[3] Anisimov V. N., Litvinov V. L., “Investigation of resonance characteristics of mechanical objects with moving borders by application of the Kantorovich–Galyorkin method”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 1(18), 149–158 | DOI
[4] Goroshko O. A., Savin G. N., Introduction in mechanics of one dimensional deformable bodies of variable length, Naukova Dumka, Kiev, 1971, 270 pp. | Zbl
[5] Vesnitskii A. I., Waves in systems with moving boundaries and loads, Moscow, Fizmatlit, 2001, 320 pp.
[6] Vesnitskii A. I., “The inverse problem for a one-dimensional resonator the dimensions of which vary with time”, Radiophys. Quantum Electronics, 14:10 (1971), 1209–1215 | DOI
[7] Barsukov K. A., Grigoryan G. A., “Theory of a waveguide with moving boundaries”, Radiophys. Quantum Electronics, 19:2 (1976), 194–200 | DOI
[8] Anisimov V. N., Litvinov V. L., The resonance properties of mechanical objects with moving boundaries, SamGTU, Samara, 2009, 131 pp.