Mots-clés : convolution of distributions, convolution algebra, Laplace transform.
@article{VSGTU_2012_127_2_a4,
author = {I. L. Kogan},
title = {Construction of {Mikusinski} operational calculus based on the convolution algebra of distributions. {Basic} provisions},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {44--52},
year = {2012},
volume = {127},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_127_2_a4/}
}
TY - JOUR AU - I. L. Kogan TI - Construction of Mikusinski operational calculus based on the convolution algebra of distributions. Basic provisions JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 44 EP - 52 VL - 127 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_127_2_a4/ LA - ru ID - VSGTU_2012_127_2_a4 ER -
%0 Journal Article %A I. L. Kogan %T Construction of Mikusinski operational calculus based on the convolution algebra of distributions. Basic provisions %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 44-52 %V 127 %N 2 %U http://geodesic.mathdoc.fr/item/VSGTU_2012_127_2_a4/ %G ru %F VSGTU_2012_127_2_a4
I. L. Kogan. Construction of Mikusinski operational calculus based on the convolution algebra of distributions. Basic provisions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 127 (2012) no. 2, pp. 44-52. http://geodesic.mathdoc.fr/item/VSGTU_2012_127_2_a4/
[1] Mikusinski J., Operational calculus, Pergamon Press, New York, 1959, 495 pp. ; Mikusinskii Ya., Operatornoe ischislenie, Inostr. lit., M., 1956, 366 pp. | MR | Zbl | MR
[2] Schwartz L., Méthodes mathématiques pour les sciences physiques, Hermann, Paris, 1961, 39 pp. ; Shvarts L., Matematicheskie metody dlya fizicheskikh nauk, Mir, M., 1965, 412 pp. | MR | Zbl | MR
[3] Vladimirov V. S., Generalized functions in mathematical physics, Nauka, Moscow, 1979, 319 pp. | MR
[4] Kogan I. L., “Method of Duhamel integral for ordinary differential equations with constant coefficients in respect to the theory of distributions”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1(20), 37–45 | DOI
[5] Gel'fand I. M., Shilov G. E., Generalized functions, v. 1, Properties and operations, Academic Press, New York, 1964, 423 pp.
[6] Lavrent'ev M. A., Shabat B. V., Methods of the theory of functions in a complex variable, Nauka, Moscow, 1987, 688 pp. | MR | Zbl