Research of efficiency of algorithms of method Everhart with high order of approximating formulas
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 127 (2012) no. 2, pp. 164-173
Cet article a éte moissonné depuis la source Math-Net.Ru
The modified algorithm for the numerical integration of the equations of celestial motion by the Everhart's method is developed. The study of the effectiveness of the algorithm for approximating high-order formulas is carried. High efficiency of the method is shown on the example of joint integration of the equations of motion of major planets, the Moon, the Sun and the small bodies of Solar system.
Keywords:
Everhart's method, numerical integration, small bodies of Solar system.
Mots-clés : orbit
Mots-clés : orbit
@article{VSGTU_2012_127_2_a18,
author = {A. A. Zausaev},
title = {Research of efficiency of algorithms of method {Everhart} with high order of approximating formulas},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {164--173},
year = {2012},
volume = {127},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_127_2_a18/}
}
TY - JOUR AU - A. A. Zausaev TI - Research of efficiency of algorithms of method Everhart with high order of approximating formulas JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 164 EP - 173 VL - 127 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_127_2_a18/ LA - ru ID - VSGTU_2012_127_2_a18 ER -
%0 Journal Article %A A. A. Zausaev %T Research of efficiency of algorithms of method Everhart with high order of approximating formulas %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 164-173 %V 127 %N 2 %U http://geodesic.mathdoc.fr/item/VSGTU_2012_127_2_a18/ %G ru %F VSGTU_2012_127_2_a18
A. A. Zausaev. Research of efficiency of algorithms of method Everhart with high order of approximating formulas. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 127 (2012) no. 2, pp. 164-173. http://geodesic.mathdoc.fr/item/VSGTU_2012_127_2_a18/
[1] Everhart E., “Implicit Single-Sequence Methods for Integrating Orbits”, Cel. Mech., 10:1 (1974), 35–55 | DOI | MR | Zbl
[2] Zausaev A. F., Zausaev A. A., Mathematical modelling of orbital evolution of small bodies of the Solar system, Mashinostroenie, Moscow, 2008, 250 pp.
[3] Zausaev A. F., Abramov V. V., Denisov S. S., Catalogue of orbital evolution of asteroids approaching to the Earth between 1800 and 2204, Mashinostroenie-1, Moscow, 2007, 608 pp.
[4] Modern numerical methods for ordinary differential equations, eds. G. Hall; J. M. Watt, Clarendon Press, Oxford, 1976, 336 pp. | MR
[5] Brumberg V. A., Relativistic celestial mechanics, Nauka, Moscow, 1972, 382 pp. | MR | Zbl