Mots-clés : elliptic equations
@article{VSGTU_2012_126_1_a27,
author = {D. K. Potapov},
title = {On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {251--255},
year = {2012},
volume = {126},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_126_1_a27/}
}
TY - JOUR AU - D. K. Potapov TI - On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 251 EP - 255 VL - 126 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_126_1_a27/ LA - ru ID - VSGTU_2012_126_1_a27 ER -
%0 Journal Article %A D. K. Potapov %T On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 251-255 %V 126 %N 1 %U http://geodesic.mathdoc.fr/item/VSGTU_2012_126_1_a27/ %G ru %F VSGTU_2012_126_1_a27
D. K. Potapov. On number of solutions in eigenvalue problems for elliptic equations with discontinuous nonlinearities. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 126 (2012) no. 1, pp. 251-255. http://geodesic.mathdoc.fr/item/VSGTU_2012_126_1_a27/
[1] Pavlenko V. N., Potapov D. K., “Existence of a ray of eigenvalues for equations with discontinuous operators”, Siberian Math. J., 42:4 (2001), 766–773 | DOI | MR | Zbl
[2] Potapov D. K., “On an existence of a ray of eigenvalues for equations of elliptic type with discontinuous nonlinearities in a critical case”, Vestn. St. Petersburg Univ. Ser. 10, 2004, no. 4, 125–132
[3] Potapov D. K., “On an upper bound for the value of the bifurcation parameter in eigenvalue problems for elliptic equations with discontinuous nonlinearities”, Differ. Equ., 44:5 (2008), 737–739 | DOI | MR | Zbl
[4] Potapov D. K., “On the eigenvalue set structure for higher-order equations of elliptic type with discontinuous nonlinearities”, Differ. Equ., 46:1 (2010), 155–157 | DOI | MR | Zbl
[5] Krasnosel'skiy M. A., Pokrovskiy A. V., “Regular solutions of equations with discontinuous nonlinearities”, Dokl. AN SSSR, 226:3 (1976), 506–509 | MR
[6] Gol'dshtik M. A., “A mathematical model of separated flows in an incompressible liquid”, Dokl. AN SSSR, 147:6 (1962), 1310–1313
[7] Chang K. C., “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129 | DOI | MR | Zbl
[8] Lavrent'ev M. A., The variational method in boundary-value problems for systems of equations of elliptic type, AN SSSR, Moscow, 1962, 136 pp. | MR
[9] Vainshtein I. I., Yurovskii V. K., “Attachment of eddy flows of an ideal fluid”, J. Appl. Mech. Tech. Phys., 17:5 (1976), 678–679 | DOI
[10] Titov O. V., “Variational approach for plane problems of matching potential and vortical flows”, J Appl. Math. Mech., 41:2 (1977), 365–368 | DOI
[11] Potapov D. K., “A mathematical model of separated flows in an incompressible fluid”, Izv. RAEN. Ser. MMMIU, 8:3–4 (2004), 163–170
[12] Vainshtein I. I., “The dual problem to M. A. Goldshtik problem with arbitrary vorticity”, J. Sib. Fed. Univ. Math. Phys., 3:4 (2010), 500–506
[13] Vainshtein I. I., “Solution of two dual problems of gluing vorter and potential flows by M. A. Goldshtick variational method”, J. Sib. Fed. Univ. Math. Phys., 4:3 (2011), 320–331