Parametric identification of Cauchy problem for one fractional differential equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 126 (2012) no. 1, pp. 157-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method for parametric identification of Cauchy problem for a fractional differential equation with fractional differential operator of $\alpha \in (0, 1)$ degree according to instantaneous values of experimental observations is suggested. The method is based on computation of mean-square estimations for coefficients of linear parametric discrete model of approximation function. Numerically-analytical investigations have been done, the results let us conclude about high efficiency of the method.
Keywords: fractional differential operators, parametric identification, linear parametric discrete model, difference equation.
@article{VSGTU_2012_126_1_a15,
     author = {A. S. Ovsienko},
     title = {Parametric identification of {Cauchy} problem for one fractional differential equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {157--165},
     year = {2012},
     volume = {126},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_126_1_a15/}
}
TY  - JOUR
AU  - A. S. Ovsienko
TI  - Parametric identification of Cauchy problem for one fractional differential equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 157
EP  - 165
VL  - 126
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_126_1_a15/
LA  - ru
ID  - VSGTU_2012_126_1_a15
ER  - 
%0 Journal Article
%A A. S. Ovsienko
%T Parametric identification of Cauchy problem for one fractional differential equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 157-165
%V 126
%N 1
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_126_1_a15/
%G ru
%F VSGTU_2012_126_1_a15
A. S. Ovsienko. Parametric identification of Cauchy problem for one fractional differential equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 126 (2012) no. 1, pp. 157-165. http://geodesic.mathdoc.fr/item/VSGTU_2012_126_1_a15/

[1] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, ed. J. van Mill, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl

[2] Ogorodnikov E. N., “Some Aspects of Initial Value Problems Theory for Differential Equations with Riemann–Liouville Derivatives”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 5(21), 10–23 | DOI

[3] Ogorodnikov E. N., Yashagin N. S., “Some Special Functions in the Solution To Cauchy Problem for a Fractional Oscillating Equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 1(18), 276–279 | DOI

[4] Dzhrbashyan M. M., Integral transforms and representation of functions in the complex domain, Nauka, Moscow, 1966, 672 pp. | MR

[5] Zoteev V. E., Ovsienko A. S., “Parametric identification of the fractional oscillator based on difference equation”, Proceedings of the Sixth All-Russian Scientific Conference with international participation (1–4 June 2009). Part 4, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2009, 61–69

[6] Zoteev V. E., Parametric identification of dissipative mechanical systems based on difference equations, ed. V. P. Radchenko, Mashinostroenie-1, Moscow, 2009, 344 pp.