Generalization of coarse-grained models with introduction of three-dimensional space
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 125 (2011) no. 4, pp. 110-117
Cet article a éte moissonné depuis la source Math-Net.Ru
As a candidate for generalization in the scope of this work we consider any model derived from a system of first order ordinary differential equations for quantities of abstract bulk objects. The main objective of this work is to construct a universal scheme for generalization of such models with introduction of three-dimensional space and regard for migration of objects without switching to partial derivatives.
Keywords:
mathematical modeling, ordinary differential equations, model space generalization.
@article{VSGTU_2011_125_4_a13,
author = {M. N. Nazarov},
title = {Generalization of coarse-grained models with introduction of three-dimensional space},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {110--117},
year = {2011},
volume = {125},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_125_4_a13/}
}
TY - JOUR AU - M. N. Nazarov TI - Generalization of coarse-grained models with introduction of three-dimensional space JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 110 EP - 117 VL - 125 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_125_4_a13/ LA - ru ID - VSGTU_2011_125_4_a13 ER -
%0 Journal Article %A M. N. Nazarov %T Generalization of coarse-grained models with introduction of three-dimensional space %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 110-117 %V 125 %N 4 %U http://geodesic.mathdoc.fr/item/VSGTU_2011_125_4_a13/ %G ru %F VSGTU_2011_125_4_a13
M. N. Nazarov. Generalization of coarse-grained models with introduction of three-dimensional space. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 125 (2011) no. 4, pp. 110-117. http://geodesic.mathdoc.fr/item/VSGTU_2011_125_4_a13/
[1] Kanwal R. P., Generalized Functions: Theory and Technique, Birkhäuser Boston, Massachusetts, 1998, 474 pp. | MR | Zbl
[2] Pontryagin L. S., Ordinary Differential Equations, Nauka, Moscow, 1974, 331 pp.
[3] Tel G., Introduction to Distributed Algorithms, Cambridge University Press, Cambridge – New York, 1994, 546 pp. | MR | Zbl