Mots-clés : adjoint equation, Goursat problem, Riemann matrix.
@article{VSGTU_2011_124_3_a2,
author = {A. A. Andreev and J. O. Yakovleva},
title = {The {Goursat} problem for one hyperbolic system of~the third order differential equations with two independent variables},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {35--41},
year = {2011},
volume = {124},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_124_3_a2/}
}
TY - JOUR AU - A. A. Andreev AU - J. O. Yakovleva TI - The Goursat problem for one hyperbolic system of the third order differential equations with two independent variables JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 35 EP - 41 VL - 124 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_124_3_a2/ LA - ru ID - VSGTU_2011_124_3_a2 ER -
%0 Journal Article %A A. A. Andreev %A J. O. Yakovleva %T The Goursat problem for one hyperbolic system of the third order differential equations with two independent variables %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 35-41 %V 124 %N 3 %U http://geodesic.mathdoc.fr/item/VSGTU_2011_124_3_a2/ %G ru %F VSGTU_2011_124_3_a2
A. A. Andreev; J. O. Yakovleva. The Goursat problem for one hyperbolic system of the third order differential equations with two independent variables. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 124 (2011) no. 3, pp. 35-41. http://geodesic.mathdoc.fr/item/VSGTU_2011_124_3_a2/
[1] Courant R., Hilbert D., Methods of mathematical physics, v. II, Partial differential equations, Interscience Publishers, New York – London, 1962, 830 pp. ; Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 831 pp. | Zbl | MR
[2] Riemann B., “Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite”, Abh. d. Gött. Ges. d. Wiss., 8 (1860), 43–68
[3] Bitsadze A. V., Some classes of partial differential equations, Nauka, Moscow, 1981, 448 pp. | MR
[4] Vekua I. N., New Methods for Solving Elliptic Equations, OGIZ, Moscow–Leningrad, 1948, 296 pp. | MR
[5] Soldatov A. P., Shkhanukov M. Kh., “Boundary value problems with A. A. Samarskiĭ's general nonlocal condition for higher-order pseudoparabolic equations”, Soviet Math. Dokl., 36:3 (1988), 507–511 | MR | Zbl
[6] Dzhokhadze O. M., “The Riemann function for higher-order hyperbolic equations and systems with dominated lower terms”, Differ. Equ., 39:10 (2003), 1440–1453 | DOI | MR | Zbl
[7] Zikirov O. S., “Local and nonlocal boundary-value problems for third-order hyperbolic equations”, J. Math. Sci., 175:1, 104–123 | DOI | MR | Zbl
[8] Zhegalov V. I., Mironov A. N., “Cauchy problems for two partial differential equations”, Russian Math. (Iz. VUZ), 46:5 (2002), 21–28 | MR | Zbl
[9] Zhegalov V. I., Utkina E. A., “Pseudoparabolic equation of the third order”, Russian Math. (Iz. VUZ), 43:10 (1999), 70–73 | MR | Zbl
[10] Gantmakher F. R., Theory of matrices, Nauka, Moscow, 549 pp. | MR | Zbl
[11] Andreev A. A., Construction of elementary solutions and solution of Cauchy problem for equations and hyperbolic systems of equations, Ph. D. Thesis (Phys. Math.), Kuibyshev, 1981, 100 pp.
[12] Andreev A. A., “On some applications of associated hypergeometric functions”, Differential Equations (Mathematical Physics), Kuibyshev, 1984, 8–9
[13] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, ed. H. Bateman, McGraw-Hill Book Co, Inc., New York – Toronto – London, 1953, 302 pp. ; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. V 3-kh t, v. 1, Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973, 296 pp. | Zbl
[14] Andreev A. A., Ogorodnikov E. N., “Matrix integro-differential operators and their application”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 1999, no. 7, 27–37 | DOI
[15] Koshlyakov N. S., Gliner É. B., Smirnov M. M., The differential equations of mathematical physics, Gosudarstv. Izd-vo. Fiz.-Mat. Lit., Moscow, 1962, 767 pp. | MR