Multipoint moment functions of structural properties for polydisperse composites
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 123 (2011) no. 2, pp. 74-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stochastic boundary-value problem of elasticity theory for two-phase polydisperse composites is stated. The solution method with using high order moment functions is described. Algorithm of synthesis of $n$-order moment functions for 3D structures is presented. Approximating expression for moment functions is suggested. Examples of calculation of high-order moment functions for polydisperse structures are given.
Mots-clés : composites
Keywords: moment functions, random polydisperse structure, 3D models, boundary-value problem, approximation.
@article{VSGTU_2011_123_2_a8,
     author = {M. A. Tashkinov},
     title = {Multipoint moment functions of structural properties for polydisperse composites},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {74--82},
     year = {2011},
     volume = {123},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a8/}
}
TY  - JOUR
AU  - M. A. Tashkinov
TI  - Multipoint moment functions of structural properties for polydisperse composites
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 74
EP  - 82
VL  - 123
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a8/
LA  - ru
ID  - VSGTU_2011_123_2_a8
ER  - 
%0 Journal Article
%A M. A. Tashkinov
%T Multipoint moment functions of structural properties for polydisperse composites
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 74-82
%V 123
%N 2
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a8/
%G ru
%F VSGTU_2011_123_2_a8
M. A. Tashkinov. Multipoint moment functions of structural properties for polydisperse composites. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 123 (2011) no. 2, pp. 74-82. http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a8/

[1] Buryachenko V. A., Micromehcanics of heterogenous materials, Springer-Verlag, New York, 2007, 687 pp. | MR | Zbl

[2] Lifshits I. M., Rozentsveig L. N., “Theory of elastic properties of polycrystals”, ZhETF, 16:11 (1946), 967–980

[3] Volkov S. D., Stavrov V. P., Statistical mechanics of composite materials, BGU, Minsk, 1978, 206 pp.

[4] Lomakin V. A., Statistical problems of the mechanics of solid deformable bodies, Nauka, Moscow, 1970, 139 pp.

[5] Shermergor T. D., Theory of elasticity of microheterogeneous media, Nauka, Moscow, 1977, 400 pp.

[6] Sokolkin Yu. V., Tashkinov A. A., Mechanics of deformation and dracture of structurally inhomogeneous bodies, Nauka, Moscow, 1984, 116 pp.

[7] Pankov A. A., Statistical mechanics of piezocomposites, PGTU, Perm, 2009, 480 pp.

[8] Tashkinov M. A., Vil'deman V. E., Mikhailova N. V., “Method of successive approximations in a stochastic boundary-value problem in the elasticity theory of structurally heterogeneous media”, Composites: Mechanics, Computations, Applications, An International Journal, 2:1 (2011), 21–37 | DOI

[9] Christensen R. M., Mechanics of composite materials, Willey-Interscience, New York, 1979, 348 pp.; Kristensen R., Vvedenie v mekhaniku kompozitov, Mir, M., 1984, 336 pp.