Non-stationary problems of the dynamics of stepped section plates and rotation cylindrical shells
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 123 (2011) no. 2, pp. 278-288 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The technique of exact non-stationary dynamic calculation of compound designed systems of in steps-variable thickness a method initial parameters is offered. The settlement scheme considers displacement of median surfaces of interfaced elements. As an example calculation of base plate of a dam GES and matrices of explosive punching is resulted at pulse influence.
Keywords: non-stationary problems, method of initial parameters, plate of step section, cylindrical shells.
@article{VSGTU_2011_123_2_a34,
     author = {Yu. P. D'yachenko and \'E. Ya. Elenitskii and D. V. Petrov},
     title = {Non-stationary problems of the dynamics of stepped section plates and rotation cylindrical shells},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {278--288},
     year = {2011},
     volume = {123},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a34/}
}
TY  - JOUR
AU  - Yu. P. D'yachenko
AU  - É. Ya. Elenitskii
AU  - D. V. Petrov
TI  - Non-stationary problems of the dynamics of stepped section plates and rotation cylindrical shells
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 278
EP  - 288
VL  - 123
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a34/
LA  - ru
ID  - VSGTU_2011_123_2_a34
ER  - 
%0 Journal Article
%A Yu. P. D'yachenko
%A É. Ya. Elenitskii
%A D. V. Petrov
%T Non-stationary problems of the dynamics of stepped section plates and rotation cylindrical shells
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 278-288
%V 123
%N 2
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a34/
%G ru
%F VSGTU_2011_123_2_a34
Yu. P. D'yachenko; É. Ya. Elenitskii; D. V. Petrov. Non-stationary problems of the dynamics of stepped section plates and rotation cylindrical shells. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 123 (2011) no. 2, pp. 278-288. http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a34/

[1] Biderman V. L., Applied Theory of mechanical vibrations, Vyssh. shk., Moscow, 1972, 416 pp. | Zbl

[2] Godunov S. K., “Numerical solution of boundary-value problems for systems of linear ordinary differential equations”, Uspekhi Mat. Nauk, 16:3(99) (1961), 171–174 | MR | Zbl

[3] Abramov A. A., “On the transfer of boundary conditions for systems of ordinary linear differential equations (a variant of the dispersive method)”, U.S.S.R. Comput. Math. Math. Phys., 1:3 (1962), 617–622 | DOI | MR | Zbl

[4] Elenitskiy É. Ya., D'yachenko Yu. P., “Free vibrations of a rectangular plate stepped section with finite shear stiffness”, Problems with free boundaries and nonlocal problems for nonlinear parabolic equations, eds. Yu. A. Mitropol'skiy, A. A. Berezovskiy, In-t Matematiki NAN Ukrainy, Kiev, 1996, 17–20 | MR

[5] D'yachenko Yu. P., “A method for computing the unsteady action on rectangular plates of stepwise varying thickness”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2008, no. 2(61), 136–159 | MR | Zbl

[6] Grigolyuk E. I., Selezov I. T., Nonclassical theories of rod, plate, and shell vibrations, Results in Science and Technology. Mechanics of Deformable Solids, 5, VINITI, Moscow, 1973, 272 pp. | Zbl

[7] Dynamic calculation of structures for special actions, Designer's Handbook, eds. B. G. Korenev, I. M. Rabinovich, Stroyizdat, Moscow, 1981, 215 pp.