Problems with Laplace operator on topological surfaces
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 123 (2011) no. 2, pp. 243-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work highlights the problems related to the Laplace operator on topological surfaces such as Mobius strip, Klein bottle and torus. In particular, we discuss oscillations on the surface of the Mobius strip, eigenfunctions and eigenvalues of the Laplace operator on the surface of the Klein bottle, as well as behavior of a charged particle on the torus.
Keywords: quantum physics, non-Euclidean topological spaces, Laplace operator, Mobius strip, Klein bottle
Mots-clés : quantization, torus.
@article{VSGTU_2011_123_2_a29,
     author = {M. Y. Shalaginov and M. G. Ivanov and M. V. Dolgopolov},
     title = {Problems with {Laplace} operator on~topological~surfaces},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {243--250},
     year = {2011},
     volume = {123},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a29/}
}
TY  - JOUR
AU  - M. Y. Shalaginov
AU  - M. G. Ivanov
AU  - M. V. Dolgopolov
TI  - Problems with Laplace operator on topological surfaces
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2011
SP  - 243
EP  - 250
VL  - 123
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a29/
LA  - ru
ID  - VSGTU_2011_123_2_a29
ER  - 
%0 Journal Article
%A M. Y. Shalaginov
%A M. G. Ivanov
%A M. V. Dolgopolov
%T Problems with Laplace operator on topological surfaces
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2011
%P 243-250
%V 123
%N 2
%U http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a29/
%G ru
%F VSGTU_2011_123_2_a29
M. Y. Shalaginov; M. G. Ivanov; M. V. Dolgopolov. Problems with Laplace operator on topological surfaces. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 123 (2011) no. 2, pp. 243-250. http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a29/

[1] Prasolov V. V., Illustrative topology, MCNMO, Moscow, 1995, 552 pp.

[2] Andreev A. A., Beloglazov G. S., Volovich I. V., Danilyuk B. V., Dolgopolov M. V., Zubarev A. P., Ivanov M. G., Leksina S. V., Pivovarova A. S., Radaev Yu. N., Rodionova I. N., Rykova E. N., Steryakova A. A., Mathematical Physics: Problems and Solutions of Open SSU Student Contest Olympiad (Samara, April 25, 2009), Modern Problems in Mathematical Physics, Special Issue No. 2, Samarsk. Un-t, Samara, 2010, 69 pp.

[3] Beloglazov G. S., Bobrik A. L., Volovich I. V., Danilyuk B. V., Dolgopolov M. V., Zubarev A. P., Ivanov M. G., Panina O. G., Petrova E.Yu., Rodionova I. N., Rykova É. N., Tsirova I. S., Chervon S. V., Shalaginov M. Yu., Mathematical Physics: Problems and Solutions of Distance All-Russian Students Training Contest Olympiad in Mathematical and Theoretical Physics (May 21st–24th, 2010), Modern Problems in Mathematical Physics, Special Issue No. 4, Samarsk. Un-t, Samara, 2010, 84 pp.

[4] Landau L. D., Lifshitz E. M., Theoretical Physics, v. 3, Quantum mechanics, Nauka, Moscow, 1986, 736 pp.