Keywords: numerical integration, motion differential equation, barycentric coordinates.
@article{VSGTU_2011_123_2_a13,
author = {A. F. Zausaev},
title = {Numerical modelling of major planets movement on~the new interaction principle basis},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {116--122},
year = {2011},
volume = {123},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a13/}
}
TY - JOUR AU - A. F. Zausaev TI - Numerical modelling of major planets movement on the new interaction principle basis JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 116 EP - 122 VL - 123 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a13/ LA - ru ID - VSGTU_2011_123_2_a13 ER -
%0 Journal Article %A A. F. Zausaev %T Numerical modelling of major planets movement on the new interaction principle basis %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 116-122 %V 123 %N 2 %U http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a13/ %G ru %F VSGTU_2011_123_2_a13
A. F. Zausaev. Numerical modelling of major planets movement on the new interaction principle basis. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 123 (2011) no. 2, pp. 116-122. http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a13/
[1] Zausaev A. F., “Theory of motion of $n$ material bodies, based on a new interaction principle”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2006, no. 43, 132–139 | DOI
[2] Zausaev A. F., “Influence non-spherical shape of the Earth on perturbed body motion”, Proceedings of the Seven All-Russian Scientific Conference with international participation. Part 3, Matem. Modelirovanie i Kraev. Zadachi, SamGTU, Samara, 2010, 105–111
[3] Newhall X. X., Standish E. M., Williams J. G., “DE 102: A numerically integrated ephemeris of the moon and planets spanning forty-four centuries”, Astron. Astrophys., 125:1 (1983), 150–167 | Zbl
[4] Standish E. M., JPL Planetary and Lunar Ephemerides, DE405/LE405, Jet Prop Lab Technical Report. IOM 312. F–98–048, http://iau-comm4.jpl.nasa.gov/de405iom/de405iom.pdf
[5] Everhart E., “Implist single methods for integrating orbits”, Celestial Mechanics, 10:1 35–55 (1974) | DOI | MR | Zbl
[6] Zausaev A. F., Zausaev A. A., “Employment of the modification Everhart's method for solution of problems of celestial mechanics”, Matem. Modelirovanie, 20:11 (2008), 109–114 | Zbl
[7] Brumberg V. A., Relativistic celestial mechanics, Nauka, Moscow, 1972, 382 pp. | MR | Zbl