, from $H^p$ to BMO, and from BMO to BMO.
Keywords: sphere, oscillating symbol, BMO, $(H^p{-}H^{q})$-estimates
@article{VSGTU_2011_123_2_a1,
author = {A. V. Gil and A. I. Zadorozhnyi and V. A. Nogin},
title = {Estimates for some convolution operators with singularities of their kernels on spheres},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {17--23},
year = {2011},
volume = {123},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a1/}
}
TY - JOUR AU - A. V. Gil AU - A. I. Zadorozhnyi AU - V. A. Nogin TI - Estimates for some convolution operators with singularities of their kernels on spheres JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2011 SP - 17 EP - 23 VL - 123 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a1/ LA - ru ID - VSGTU_2011_123_2_a1 ER -
%0 Journal Article %A A. V. Gil %A A. I. Zadorozhnyi %A V. A. Nogin %T Estimates for some convolution operators with singularities of their kernels on spheres %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2011 %P 17-23 %V 123 %N 2 %U http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a1/ %G ru %F VSGTU_2011_123_2_a1
A. V. Gil; A. I. Zadorozhnyi; V. A. Nogin. Estimates for some convolution operators with singularities of their kernels on spheres. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 123 (2011) no. 2, pp. 17-23. http://geodesic.mathdoc.fr/item/VSGTU_2011_123_2_a1/
[1] Strichartz R. S, “Convolutions with kernels having singularities on a sphere”, Trans. Amer. Math. Soc., 146:2 (1970), 461–471 | DOI | MR
[2] Sjöstrand S., “On the Riesz means of the solutions of the Schrödinger equation”, Ann. Scuola Norm. Sup. Pisa., 24:3 (1970), 331–348 | MR | Zbl
[3] Peral J. C., “$L^p$ estimates for the wave equation”, J. Funct. Anal., 36:1 (1980), 114–115 | DOI | MR
[4] Miyachi A., “On some singular Fourier multipliers”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28:2 (1981), 267–315 | MR | Zbl
[5] Karasev D. N., Nogin V. A., “On the $\mathcal L$-characteristic of some potential-type operators with radial kernels, having singularities on a sphere”, Fract. Calc. Appl. Anal., 4:3 (2001), 343–366 | MR | Zbl
[6] Karapetyants A. N., Karasev D. N., Nogin V. A., “Estimates for some potential-type operators with oscillating kernels”, J. Contemp. Math. Anal., 38:2 (2003) | MR | Zbl
[7] Karasev D. N., Nogin V. A., “On the boundedness of some potential-type operators with oscillating kernels”, Math. Nachr., 278:5 (2005), 554–574 | DOI | MR | Zbl
[8] Gil A. V., Nogin V. A., “Estimates for some potential-type operators with oscillating symbols”, Vladikavkaz. Matem. Zhurn., 12:3 (2010), 21–29 | MR
[9] Gil A. V., Nogin V. A., “$H^p{-}H^q$ estimates for some potential-type operators with oscillating symbols”, Izv. vuzov. Sev.-Kav. Region, 2010, no. 5, 8–13
[10] Samko S. G., Kilbas A. A., Marichev O. I., Integrals and derivatives of fractional order and some of their applications, Nauka i Tekhnika, Minsk, 1987, 688 pp. | MR | Zbl
[11] Watson G., A treatise on the theory of Bessel functions, Cambridge University Press, London, 1922, 804 pp. ; Vatson G. N., Teoriya besselevykh funktsii, Inostr. lit., M., 1949, 798 pp. | Zbl | Zbl
[12] Fedoryuk M. V., The saddle-point method, Nauka, Moscow, 1977, 368 pp. | MR