@article{VSGTU_2010_120_1_a9,
author = {A. A. Schwab},
title = {Boundary {Integral} {Equation} {Method} for {Holomorphic} {Vector} for {Problems} {Monitoring} {Elasticity} {Field}},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {96--103},
year = {2010},
volume = {120},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_120_1_a9/}
}
TY - JOUR AU - A. A. Schwab TI - Boundary Integral Equation Method for Holomorphic Vector for Problems Monitoring Elasticity Field JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2010 SP - 96 EP - 103 VL - 120 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGTU_2010_120_1_a9/ LA - ru ID - VSGTU_2010_120_1_a9 ER -
%0 Journal Article %A A. A. Schwab %T Boundary Integral Equation Method for Holomorphic Vector for Problems Monitoring Elasticity Field %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2010 %P 96-103 %V 120 %N 1 %U http://geodesic.mathdoc.fr/item/VSGTU_2010_120_1_a9/ %G ru %F VSGTU_2010_120_1_a9
A. A. Schwab. Boundary Integral Equation Method for Holomorphic Vector for Problems Monitoring Elasticity Field. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 120 (2010) no. 1, pp. 96-103. http://geodesic.mathdoc.fr/item/VSGTU_2010_120_1_a9/
[1] G. L. Kosarev, E. Z. Rizaev, K. Sudo, “Opredelenie parametrov ochagov zemlyatresenii po nablyudaemym ostatochnym smescheniyam zemnoi poverkhnosti”, Dokl. AN SSSR, 288:4 (1986), 75–81
[2] A. A. Shvab, “Neklassicheskaya uprugo-plasticheskaya zadacha”, Izv. AN SSSR. Mekh. tvërd. tela, 1988, no. 1, 140–146
[3] A. A. Shvab, “Nekorrektnye staticheskie zadachi teorii uprugosti”, Izv. AN SSSR. Mekh. tvërd. tela, 1989, no. 6, 98–105
[4] S. Kubo, “Inverse problems related of the mechanics and fracture of solids and structures”, JSME, Int. J. Ser. 1, 31:2 (1988), 157–161
[5] Z. Gao, T. Mura, “Elasticity problems with partially overspecified boundary conditions”, International Journal of Engineering Science, 29:6 (1991), 685–692 | DOI | Zbl
[6] M. Tanaka, Y. Masuda, “Boundary element method applied to some inverse problems”, Engineering Analysis, 3:3 (1986), 138–143 | DOI
[7] L. Marin, D. Háo, D. Lesnic, “Conjugate Gradient–Boundary Element Method for the Cauchy Problem in Elasticity”, Quart. J. Mech. Appl. Math., 55:2 (2002), 227–247 | DOI | MR | Zbl
[8] L. Marin, L. Elliott, D. B. Ingham, D. Lesnic, “Boundary Element Regularisation Methods for Solving the Cauchy Problem in Linear Elasticity”, Inverse Problems in Science and Engineering, 10:4 (2002), 335–337 | DOI
[9] L. Marin, D. Lesnic, “BEM first-order regularisation method in linear elasticity for boundary identification”, Comput. Methets Appl. Mech. Engrg., 192:16–18 (2003), 2059–2071 | DOI | MR | Zbl
[10] A. A. Schwab, “Nonclassical problems of deformed solid body”, 8-Symposium, Vervormung und Bruch, Magdeburg, 1988, 90
[11] R. Fueter, “Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen”, Commentarii Mathematici Helvetici, 8:1 (1935), 371–378 | DOI | MR
[12] Gr. Moisil, N. Théodoresco, “Fonctions holomorphes dans l'espace”, Mathematica, Cluj, 5 (1931), 142–159 | Zbl
[13] A. V. Bitsadze, Osnovy teorii analiticheskikh funktsii, Nauka, M., 1984 | MR
[14] A. A. Shvab, “Ob odnoi lokalnoi zadache prodolzheniya”, Dinamika sploshnoi sredy. Vyp. 92, IgIL SO AN SSSR, Novosibirsk, ???, 103–105