Method of Duhamel Integral for Ordinary Differential Equations with Constant Coefficients in Respect to the Theory of Distributions
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 120 (2010) no. 1, pp. 37-45
Cet article a éte moissonné depuis la source Math-Net.Ru
A new proof for the method of Duhamel integral is produced. This proof is based on the convolution algebra of distributions and allows to extend this method for the region $x<0$. Universal formulas for solving equations with discontinuos right-hand side are obtained.
Keywords:
Duhamel integral, space of distributions
Mots-clés : convolution of distributions, convolution of distributions, convolution algebra.
Mots-clés : convolution of distributions, convolution of distributions, convolution algebra.
@article{VSGTU_2010_120_1_a3,
author = {I. L. Kogan},
title = {Method of {Duhamel} {Integral} for {Ordinary} {Differential} {Equations} with {Constant} {Coefficients} in {Respect} to the {Theory} of {Distributions}},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {37--45},
year = {2010},
volume = {120},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_120_1_a3/}
}
TY - JOUR AU - I. L. Kogan TI - Method of Duhamel Integral for Ordinary Differential Equations with Constant Coefficients in Respect to the Theory of Distributions JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2010 SP - 37 EP - 45 VL - 120 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGTU_2010_120_1_a3/ LA - ru ID - VSGTU_2010_120_1_a3 ER -
%0 Journal Article %A I. L. Kogan %T Method of Duhamel Integral for Ordinary Differential Equations with Constant Coefficients in Respect to the Theory of Distributions %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2010 %P 37-45 %V 120 %N 1 %U http://geodesic.mathdoc.fr/item/VSGTU_2010_120_1_a3/ %G ru %F VSGTU_2010_120_1_a3
I. L. Kogan. Method of Duhamel Integral for Ordinary Differential Equations with Constant Coefficients in Respect to the Theory of Distributions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 120 (2010) no. 1, pp. 37-45. http://geodesic.mathdoc.fr/item/VSGTU_2010_120_1_a3/
[1] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR | Zbl
[2] L. Shvarts, Matematicheskie metody dlya fizicheskikh nauk, Mir, M., 1965 | MR
[3] V. S. Vladimirov, Obobschënnye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR
[4] I. M. Gelfand, G. E. Shilov, Obobschënnye funktsii i deistviya nad nimi. Vyp. 1, Dobrosvet, M., 2000 | Zbl