Keywords: ordinary differential equations with Riemann–Liouville fractional derivatives, fractional oscillating equation, Cauchy type problem, Mittag–Leffler type functions.
@article{VSGTU_2010_120_1_a2,
author = {E. N. Ogorodnikov and N. S. Yashagin},
title = {Setting and {Solving} of the {Cauchy} type problems for the {Second} {Order} {Differential} {Equations} with {Riemann{\textendash}Liouville} {Fractional} {Derivatives}},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {24--36},
year = {2010},
volume = {120},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_120_1_a2/}
}
TY - JOUR AU - E. N. Ogorodnikov AU - N. S. Yashagin TI - Setting and Solving of the Cauchy type problems for the Second Order Differential Equations with Riemann–Liouville Fractional Derivatives JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2010 SP - 24 EP - 36 VL - 120 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGTU_2010_120_1_a2/ LA - ru ID - VSGTU_2010_120_1_a2 ER -
%0 Journal Article %A E. N. Ogorodnikov %A N. S. Yashagin %T Setting and Solving of the Cauchy type problems for the Second Order Differential Equations with Riemann–Liouville Fractional Derivatives %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2010 %P 24-36 %V 120 %N 1 %U http://geodesic.mathdoc.fr/item/VSGTU_2010_120_1_a2/ %G ru %F VSGTU_2010_120_1_a2
E. N. Ogorodnikov; N. S. Yashagin. Setting and Solving of the Cauchy type problems for the Second Order Differential Equations with Riemann–Liouville Fractional Derivatives. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 120 (2010) no. 1, pp. 24-36. http://geodesic.mathdoc.fr/item/VSGTU_2010_120_1_a2/
[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl
[2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, “Theory and Applications of Fractional Differential Equations”, North-Holland Mathematics Studies, 204, ed. J. van Mill, Elsevier, Amsterdam, 2006 | MR | Zbl
[3] I. Podlubny, “Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications”, Mathematics in Science and Engineering, 198, Academic Press, San Diego, 1999 | MR | Zbl
[4] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Jon Wiley Sons. Inc., New York, 1993 | MR
[5] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003 | Zbl
[6] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 301 pp. | Zbl
[7] N. O. Virchenko, V. Ya. Ribak, Osnovi drobovogo integro-differentsirovannya, Zadruga, Ki\"iv, 2007 | MR | Zbl
[8] K. B. Oldham, J. Spanier, “The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order”, Mathematics in Science and Engineering, 111, Academic Press, San Diego, 1974 | MR | Zbl
[9] A. A. Chikrii, I. I. Matichin, “Ob analoge formuly Koshi dlya lineinykh sistem proizvolnogo drobnogo poryadka”, Dopovidi Natsionalno\"i akademii nauk Ukra\"ini, 2007, no. 1, 50–55 | Zbl
[10] E. N. Ogorodnikov, “Matematicheskie modeli drobnykh ostsillyatorov, postanovka i struktura resheniya zadachi Koshi”, Tr. Shestoi Vseros. nauchn. konf. s mezhdunar. uchastiem. Ch. 1, Differentsialnye uravneniya i kraevye zadachi, Matem. modelirovanie i kraevye zadachi, SamGTU, Samara, 2009, 177–181
[11] F. G. Tricomi, “Integral Eguations”, Pure and Applied Mathematics, Vol. 5, Interscience, Inc., New York, 1957 ; F. Trikomi, Integralnye uravneniya, In. lit., M., 1960 | Zbl | MR
[12] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966 | Zbl
[13] E. N. Ogorodnikov, “O nekotorykh kraevykh zadachakh dlya sistemy uravnenii Bitsadze"– Lykova s involyutivnoi matritsei”, Tr. desyatoi mezhvuz. nauch. konf. Ch. 3, Differentsialnye uravneniya i kraevye zadachi, Mat. modelirovanie i kraevye zadachi, SamGTU, Samara, 2000, 119–126
[14] E. N. Ogorodnikov, N. S. Yashagin, “O nekotorykh svoistvakh operatorov s funktsiei Mittag–Lefflera v yadrakh”, Tr. shestoi Vserossiiskoi nauchn. konf. s mezhdunar. uchastiem. Ch. 3, Differentsialnye uravneniya i kraevye zadachi, Mat. modelirovanie i kraevye zadachi, SamGTU, Samara, 2009, 181–188
[15] E. N. Ogorodnikov, “Korrektnost zadachi Koshi–Gursa dlya sistemy vyrozhdayuschikhsya nagruzhennykh giperbolicheskikh uravnenii v nekotorykh spetsialnykh sluchayakh i eë ravnosilnost zadacham s nelokalnymi kraevymi usloviyami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2004, no. 26, 26–38 | DOI
[16] E. N. Ogorodnikov, N. S. Yashagin, “Nekotorye spetsialnye funktsii v reshenii zadachi Koshi dlya odnogo drobnogo ostsillyatsionnogo uravneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2009, no. 1(18), 276–279 | DOI