Mathematical modeling of longitudinal blow of the system of homogeneous rods about rigid barrier at not-holding connections
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 119 (2009) no. 2, pp. 133-139
Cet article a éte moissonné depuis la source Math-Net.Ru
Mathematical modeling of the longitudinal elastic central blow of the rod system, consisting of two homogeneous rods of various lengths and the area of cross section over a rigid barrier is implemented at not-holding connections.
Keywords:
deformation, modeling, longitudinal blow, rod.
@article{VSGTU_2009_119_2_a14,
author = {A. A. Bityurin and V. K. Manzhosov},
title = {Mathematical modeling of longitudinal blow of the system of homogeneous rods about rigid barrier at not-holding connections},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {133--139},
year = {2009},
volume = {119},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_119_2_a14/}
}
TY - JOUR AU - A. A. Bityurin AU - V. K. Manzhosov TI - Mathematical modeling of longitudinal blow of the system of homogeneous rods about rigid barrier at not-holding connections JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2009 SP - 133 EP - 139 VL - 119 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGTU_2009_119_2_a14/ LA - ru ID - VSGTU_2009_119_2_a14 ER -
%0 Journal Article %A A. A. Bityurin %A V. K. Manzhosov %T Mathematical modeling of longitudinal blow of the system of homogeneous rods about rigid barrier at not-holding connections %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2009 %P 133-139 %V 119 %N 2 %U http://geodesic.mathdoc.fr/item/VSGTU_2009_119_2_a14/ %G ru %F VSGTU_2009_119_2_a14
A. A. Bityurin; V. K. Manzhosov. Mathematical modeling of longitudinal blow of the system of homogeneous rods about rigid barrier at not-holding connections. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 119 (2009) no. 2, pp. 133-139. http://geodesic.mathdoc.fr/item/VSGTU_2009_119_2_a14/
[1] Bityurin A. A., Manzhosov V. K., “Izmenenie deformatsii na uchastkakh sterzhnevoi sistemy posle povtornogo udara v kontaktnom sechenii”, Vestn. UlGTU, 2007, no. 3, 23–28
[2] Aleksandrov E. V., Sokolinskii V. B., Prikladnaya teoriya i raschet udarnykh sistem, Nauka, M., 1969, 199 pp.
[3] Alimov O. D., Manzhosov V. K., Eremyants V. E., Rasprostranenie voln deformatsii v udarnykh sistemakh, Nauka, M., 1985, 354 pp.
[4] Bityurin A. A., Manzhosov V. K., “Modelirovanie prodolnogo udara odnorodnykh sterzhnei pri neuderzhivayuschikh svyazyakh”, Vestn. UlGTU, 2005, no. 3, 23–25
[5] Manzhosov V. K., Modeli prodolnogo udara, Ulyanovsk, 2006, 159 pp.
[6] Darkov A. V., Shpiro G. S., Soprotivlenie materialov, Vyssh. shk., M., 2003, 641 pp.