Mathematical modeling of longitudinal blow of the system of homogeneous rods about rigid barrier at not-holding connections
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 119 (2009) no. 2, pp. 133-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mathematical modeling of the longitudinal elastic central blow of the rod system, consisting of two homogeneous rods of various lengths and the area of cross section over a rigid barrier is implemented at not-holding connections.
Keywords: deformation, modeling, longitudinal blow, rod.
@article{VSGTU_2009_119_2_a14,
     author = {A. A. Bityurin and V. K. Manzhosov},
     title = {Mathematical modeling of longitudinal blow of the system of homogeneous rods about rigid barrier at not-holding connections},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {133--139},
     year = {2009},
     volume = {119},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_119_2_a14/}
}
TY  - JOUR
AU  - A. A. Bityurin
AU  - V. K. Manzhosov
TI  - Mathematical modeling of longitudinal blow of the system of homogeneous rods about rigid barrier at not-holding connections
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 133
EP  - 139
VL  - 119
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_119_2_a14/
LA  - ru
ID  - VSGTU_2009_119_2_a14
ER  - 
%0 Journal Article
%A A. A. Bityurin
%A V. K. Manzhosov
%T Mathematical modeling of longitudinal blow of the system of homogeneous rods about rigid barrier at not-holding connections
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 133-139
%V 119
%N 2
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_119_2_a14/
%G ru
%F VSGTU_2009_119_2_a14
A. A. Bityurin; V. K. Manzhosov. Mathematical modeling of longitudinal blow of the system of homogeneous rods about rigid barrier at not-holding connections. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 119 (2009) no. 2, pp. 133-139. http://geodesic.mathdoc.fr/item/VSGTU_2009_119_2_a14/

[1] Bityurin A. A., Manzhosov V. K., “Izmenenie deformatsii na uchastkakh sterzhnevoi sistemy posle povtornogo udara v kontaktnom sechenii”, Vestn. UlGTU, 2007, no. 3, 23–28

[2] Aleksandrov E. V., Sokolinskii V. B., Prikladnaya teoriya i raschet udarnykh sistem, Nauka, M., 1969, 199 pp.

[3] Alimov O. D., Manzhosov V. K., Eremyants V. E., Rasprostranenie voln deformatsii v udarnykh sistemakh, Nauka, M., 1985, 354 pp.

[4] Bityurin A. A., Manzhosov V. K., “Modelirovanie prodolnogo udara odnorodnykh sterzhnei pri neuderzhivayuschikh svyazyakh”, Vestn. UlGTU, 2005, no. 3, 23–25

[5] Manzhosov V. K., Modeli prodolnogo udara, Ulyanovsk, 2006, 159 pp.

[6] Darkov A. V., Shpiro G. S., Soprotivlenie materialov, Vyssh. shk., M., 2003, 641 pp.