LINSPACE constructive analogue of $(1+x)^h$ function
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 117 (2008) no. 2, pp. 239-249
Cet article a éte moissonné depuis la source Math-Net.Ru
Algorithms of class $FLINSPACE$ are constructed in order to calculate the arbitrary precision of $(1+x)^h$ function with the help of Taylor expansion. This function is analyzed with the multitude of constructive real numbers, that is, the algorithms calculating rational approximations are used as $x$ argument.
Keywords:
rational approximations, algorithms, closeness.
@article{VSGTU_2008_117_2_a26,
author = {S. V. Yakhontov},
title = {LINSPACE constructive analogue of $(1+x)^h$ function},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {239--249},
year = {2008},
volume = {117},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_117_2_a26/}
}
TY - JOUR AU - S. V. Yakhontov TI - LINSPACE constructive analogue of $(1+x)^h$ function JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2008 SP - 239 EP - 249 VL - 117 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGTU_2008_117_2_a26/ LA - ru ID - VSGTU_2008_117_2_a26 ER -
%0 Journal Article %A S. V. Yakhontov %T LINSPACE constructive analogue of $(1+x)^h$ function %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2008 %P 239-249 %V 117 %N 2 %U http://geodesic.mathdoc.fr/item/VSGTU_2008_117_2_a26/ %G ru %F VSGTU_2008_117_2_a26
S. V. Yakhontov. LINSPACE constructive analogue of $(1+x)^h$ function. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 117 (2008) no. 2, pp. 239-249. http://geodesic.mathdoc.fr/item/VSGTU_2008_117_2_a26/
[1] Ko K., Complexity Theory of Real Functions, Birkhäuser, Boston, 1991, 309 pp. | MR
[2] Du D., Ko K., Theory of Computational Complexity, John Wiley Sons, New York, 2000, 491 pp. | MR
[3] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 2, Fizmatlit, M., 2003, 864 pp.
[4] Shurygin V. A., Osnovy konstruktivnogo matematicheskogo analiza, Editorial URSS, M., 2004, 328 pp.