On the generalized Gauss hypergeometric function
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 116 (2008) no. 1, pp. 154-156
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work the ($\tau$, $\beta$)-hypergeometric Gauss function is considered, the basic properties of this function are investigated, some applications are given.
@article{VSGTU_2008_116_1_a22,
author = {N. A. Virchenko},
title = {On the generalized {Gauss} hypergeometric function},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {154--156},
year = {2008},
volume = {116},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_116_1_a22/}
}
TY - JOUR AU - N. A. Virchenko TI - On the generalized Gauss hypergeometric function JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2008 SP - 154 EP - 156 VL - 116 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGTU_2008_116_1_a22/ LA - ru ID - VSGTU_2008_116_1_a22 ER -
N. A. Virchenko. On the generalized Gauss hypergeometric function. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 116 (2008) no. 1, pp. 154-156. http://geodesic.mathdoc.fr/item/VSGTU_2008_116_1_a22/
[1] Wright E. M., “On the coefficient of power series having exponential singularities”, J. London Math. Soc., 8 (1933), 71–79 | DOI | Zbl
[2] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. T. 1. Gipergeometricheskaya funktsiya, funktsii Lezhandra, Nauka, M., 1965
[3] Kilbas A. A., Saigo M., $\mathrm{H}$-Transforms. Theory and Applications, Charman and Hall/CRC, Boca Raton, FL, 2004 | MR | Zbl
[4] Virchenko N., “On some generalization of gamma functions”, Dop. NAN Ukraїni, 1999, no. 10, 39–44 | MR