About one numerical stable algorithm for solving system linear algebraic equations of defect rank
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 116 (2008) no. 1, pp. 149-153
Cet article a éte moissonné depuis la source Math-Net.Ru
A new method for solving unstable problems that can be reduced to arbitrary systems of linear algebraic equations (which may not be of full rank or may be inconsistent) is examined. This method is based on the reduction of regularization of normal system equations to an equivalent augmented regularization of normal system equations.
@article{VSGTU_2008_116_1_a21,
author = {A. I. Zhdanov},
title = {About one numerical stable algorithm for solving system linear algebraic equations of defect rank},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {149--153},
year = {2008},
volume = {116},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_116_1_a21/}
}
TY - JOUR AU - A. I. Zhdanov TI - About one numerical stable algorithm for solving system linear algebraic equations of defect rank JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2008 SP - 149 EP - 153 VL - 116 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGTU_2008_116_1_a21/ LA - ru ID - VSGTU_2008_116_1_a21 ER -
%0 Journal Article %A A. I. Zhdanov %T About one numerical stable algorithm for solving system linear algebraic equations of defect rank %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2008 %P 149-153 %V 116 %N 1 %U http://geodesic.mathdoc.fr/item/VSGTU_2008_116_1_a21/ %G ru %F VSGTU_2008_116_1_a21
A. I. Zhdanov. About one numerical stable algorithm for solving system linear algebraic equations of defect rank. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 116 (2008) no. 1, pp. 149-153. http://geodesic.mathdoc.fr/item/VSGTU_2008_116_1_a21/
[1] Demmel Dzh., Vychislitelnaya lineinaya algebra. Teoriya i algoritmy, Mir, M., 2001
[2] Dzh. Golub., Ch. Van Loun, Matrichnye vychisleniya, Mir, M., 1999
[3] Trefethen L. N., Bau D., Numerical Linear Algebra, SIAM, Philadelphia, 1997 | MR
[4] Beklemishev D. V., Dopolnitelnye glavy lineinoi algebry, Nauka, M., 1983 | MR | Zbl
[5] Zhdanov A. I., Vvedenie v metody resheniya nekorrektnykh zadach, Chast 2: ucheb. posobie, Izd-vo Samar. gos. aerokosm. un-ta, Samara, 2007