About one numerical stable algorithm for solving system linear algebraic equations of defect rank
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 116 (2008) no. 1, pp. 149-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new method for solving unstable problems that can be reduced to arbitrary systems of linear algebraic equations (which may not be of full rank or may be inconsistent) is examined. This method is based on the reduction of regularization of normal system equations to an equivalent augmented regularization of normal system equations.
@article{VSGTU_2008_116_1_a21,
     author = {A. I. Zhdanov},
     title = {About one numerical stable algorithm for solving system linear algebraic equations of defect rank},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {149--153},
     year = {2008},
     volume = {116},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_116_1_a21/}
}
TY  - JOUR
AU  - A. I. Zhdanov
TI  - About one numerical stable algorithm for solving system linear algebraic equations of defect rank
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2008
SP  - 149
EP  - 153
VL  - 116
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2008_116_1_a21/
LA  - ru
ID  - VSGTU_2008_116_1_a21
ER  - 
%0 Journal Article
%A A. I. Zhdanov
%T About one numerical stable algorithm for solving system linear algebraic equations of defect rank
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2008
%P 149-153
%V 116
%N 1
%U http://geodesic.mathdoc.fr/item/VSGTU_2008_116_1_a21/
%G ru
%F VSGTU_2008_116_1_a21
A. I. Zhdanov. About one numerical stable algorithm for solving system linear algebraic equations of defect rank. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 116 (2008) no. 1, pp. 149-153. http://geodesic.mathdoc.fr/item/VSGTU_2008_116_1_a21/

[1] Demmel Dzh., Vychislitelnaya lineinaya algebra. Teoriya i algoritmy, Mir, M., 2001

[2] Dzh. Golub., Ch. Van Loun, Matrichnye vychisleniya, Mir, M., 1999

[3] Trefethen L. N., Bau D., Numerical Linear Algebra, SIAM, Philadelphia, 1997 | MR

[4] Beklemishev D. V., Dopolnitelnye glavy lineinoi algebry, Nauka, M., 1983 | MR | Zbl

[5] Zhdanov A. I., Vvedenie v metody resheniya nekorrektnykh zadach, Chast 2: ucheb. posobie, Izd-vo Samar. gos. aerokosm. un-ta, Samara, 2007